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Our Group: Security Analysis of ML Lifecycle
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Our Group: Real-world Application Scenarios

Identity Authentication Autonomous Driving

Behavior Analysis Smart Finance



Security Analysis of ML Lifecycle
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@ Transferable Targeted Adversarial Examples (NeurlPS’21)




@ Transferable Targeted Adversarial Examples (NeurlPS’21)

Noisy Examples — Adversarial Examples

Brightness Contrast "~ Elastic Pixelate JPEG

Intentional
(optimized)




@ Transferable Targeted Adversarial Examples (NeurlPS’21)

Perturbations Adversarial
( imized) example

Misalignment



@ Transferable Targeted Adversarial Examples (NeurlPS’21)

Gradient descent

————————————————————————————————————————

(x, y =bird) :

d(Y, Voira) = —Voira 108(D)



@ Transferable Targeted Adversarial Examples (NeurlPS’21)

Loss function: x'=argmaxd(y, V,.4) S.t.

X

L,-norm:
d = Ax;* + Ax,° + ...; total value

L_-norm:

d =max (Ax,, Ax,, ...) ; max value




@ Transferable Targeted Adversarial Examples (NeurlPS’21)

White-box Black-box

Gradient descent

Surrogate
model

x = argmax d(_ya ybird)

Non-targeted Attack Targeted adversarial

examples achieve
Strong transferability.

Targeted adversarial
examples achieve
little transferability.

X' =argmind(y, y,,,)

Previous work!1-¢l Targxeted Attack Ours

[1] Delving into transferable adversarial examples and black-box attacks. Liu et al. ICLR 2017.

[2] Boosting Adversarial Attacks with Momentum. Dong et al. CVPR 2018.

[3] Feature space perturbations yield more transferable adversarial examples. Inkawhich et al. CVPR 2019.

[4] Transferable perturbations of deep feature distributions. Inkawhich et al. ICLR 2020.

[5] Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability. Inkawhich et al. NeurlIPS 2020.
[6] On generating transferable targeted perturbations. Naseer et al. ICCV 2021.



Insight 1: More Iterations

ResNet50—DenseNet121 (MTDI-FGSM)
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<20 iterations in existing work:
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Insight 2: Better Loss

Log Loss when true label = 1

10
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Cross-Entropy Loss (L) causes vanishing gradient problem
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Insight 2: Better Loss

ResNet50—->DenseNet121 (MTDI-FGSM)
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Attacking Google Vision API
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(@ Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)
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(@ Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)




Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)
y P 9

0 Monocular Depth Estimation (MDE): Estimate the depth (distance to the camera)
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Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)
y P 9

O Drawbacks of existing attacks (a) and (b):
O Only Affect a small and localized area
O Fail at different conditions (e.g., angles, weathers, objects)

(@) — (b)

DRI Affected Area
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(c)
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(@ Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)

O We propose 3D2Fool to generate robust 3D adversarial textures
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Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)
y P 9

O Comparisons at various angles

Normal Ours Random APA SPOO APARATE SAAM




(@ Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)

O Comparisons at various weathers

Normal Ours Random APA SPOO APARATE SAAM
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(@ Physical 3D Adversarial Examples in Auto-Driving (CVPR’24)

O Comparisons at various objects
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(@) Defense against Poisons via Image Pre-processing (ICML’23)
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(@) Defense against Poisons via Image Pre-processing (ICML’23)

When the poisoning attack happens,
a (fully-trained) target model hasn’t existed yet.

White-box Black-box

Gradient descent
Transfer

Surrogate - -
model Training data




(@) Defense against Poisons via Image Pre-processing (ICML’23)
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Unlearnable Examples: Making Personal Data Unexploitable. Huang et al. ICLR 2021



(@) Defense against Poisons via Image Pre-processing (ICML’23)

Slightly-trained surrogate Fully-trained surrogate
A A

4 Y4 Y4 N\

Clean

Lo =
Frequency principle:
Deep neural networks often learn from
low to high frequencies during training!.2:3l, 7 !
2 p—
Epoch

[1] On the Spectral Bias of Neural Networks. Rahaman et al. ICML 2019
[2] Training Behavior of Deep Neural Network in Frequency Domain. Xu et al. ICONIP 2019
[3] Theory of the Frequency Principle for General Deep Neural Networks. Luo et al. CSIAM Trans. Appl. Math. 2021



(@) Defense against Poisons via Image Pre-processing (ICML’23)

Low-frequency High-frequency

A
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Clean

Color shortcuts Texture shortcuts

Grayscale-based JPEG-based

defense: * = * defense: * Eb




(@) Defense against Poisons via Image Pre-processing (ICML’23)

ours SOTA
T | Poisons/Countermeasures ‘ w/o | Gray JPEG Gray+JPEG AT
| Clean (no poison) \ 04.68 | 92.41 85.38 83.79 84.99
DC (Feng et al., 2019) 16.30 | 93.07 81.84 83.09 78.00
NTGA (Yuan & Wu, 2021) 4246 | 74.32 69.49 69.86 70.05
EM (Huang et al., 2021) 21.05 | 93.01 81.50 83.06 84.80 effective + +
REM (Fuet al., 2021) 25441 92.84 82.28 83.00 82.99
Lo =8 | SG (van Vlijmen et al., 2022) 33.05] 86.42 79.49 79.21 76.38
TC (Shen et al., 2019) 88.70 | 79.75  85.29 82.43 84.55 efficient+ +
HYPO (Tao et al., 2021) 71.54 | 61.86 85.45 82.94 84.91
TAP (Fowl et al., 2021b) 8.17 | 9.11  83.87 81.94 83.31
SEP (Chen et al., 2023) 3.85 3.57 84.37 82.18 84.12
Io—10 LSP (Yu et al., 2022) 19.07 | 82.47 83.01 79.05 84.59
=" AR (Sandoval-Segura et al., 2022) | 13.28 | 34.04 85.15 82.81 83.17
Lo=1 | OPS (Wuetal, 2023) | 36.55 | 42.44 8253 79.10 14.41

Assumption: Attacks do not know our defense, i.e., no adaptive attacks.
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(@) Automatic Training Problem Detection&Repair (ICSE’21)

Model training gets heavier and heavier...

Language Model Size Over Time
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(@) Automatic Training Problem Detection&Repair (ICSE’21)

Model training may fail sometimes...

TLoss
Gradient
Explosion
- Only Visualize
- Manual detection
Code - Manual repair = = =
bugs = o 5

1&-’: £ i £ =
¥ 1 ®TensorBoard



(@) Automatic Training Problem Detection&Repair (ICSE’21)

Designing goals

 To detect the training bugs in real time
- What is the symptoms of problems?

» To repair the buggy model automatically
- Which is the suitable solution?



(@) Automatic Training Problem Detection&Repair (ICSE’21)

Being real-time and automatic is necessary because...

- 20 layers, 410K parameters

Random Initializer - ReLU activation, glorot uniform initializer, Adam optimizer

Shuffled Data - MNIST dataset, 50 epoch, 100 repeated runs
—— : — — - i,
Y 4 Dying Relliezgrrms Osclllating Loss Ww"ww

; Al ﬂ di
: 0~9: 50runs AvgAcc: 90.36%
D RelLU Not Happened:
ying PP 10~19: 9 runs  Avg Acc: 89.82%

. 0
20runs - AvgACC: 85.34% 20~29: 8runs  Avg Acc: 86.89%

Randomness Dying ReLU Happened: 30~49: 4runs  AvgAcc: 85.99%
80 runs AvgACC: 11.35% No  29runs AvgAcc: 90.47%



(@) Automatic Training Problem Detection&Repair (ICSE’21)

Problem Detection Automatic Repair
%_ 1_. Aad : Model to Retrain _Rdpaired %:
Training Monitor TTTTITTTTTTTTTTT |
Model ~o : Well-trained
Sa | Model
Recorded Data ) OO /
_- Solution Scheduler
© ‘ Failed
& Problem “Tr--"

Problem Recognizer Problem Report




(@) Automatic Training Problem Detection&Repair (ICSE’21)

Analyze recorded data for 5 problems

B Vanishing Gradient & Exploding Gradient

B Dying RelLU
B Oscillating Loss

B Slow Convergence

1. Adding BN layers

2. Substituting Activation

3. Substituting Initializer

~_

Solution

% Schedular

Retrain

Solved %

Dying ReLU Model t

Fail

Well-trained
Model

[ Static Data

Model Definition

[0 Runtime Data

Lr
Momentum

Loss
° Accuracy




(@) Automatic Training Problem Detection&Repair (ICSE’21)

« Detect 316 problems in 262/495 buggy models on 6 datasets.
« Repair 309 problems with a ratio of 97.78%.
« Improve average model accuracy by 47.08%.

0.7 3 1o ¢ pe— =— _ EEmeSE 1.0
0.61 0.9
3os Sor M| g
g 5 © 0.7 o -
§ 0.4 In|t|a! - —— Initiall O 0.6 In|t|a|.
S - Repaired e Repaired & - Repaired
_10.3 O _lga
© © 0.4 \ U “ ©
= 0.2 > >
; 0.3
0.2
0.1 0.21 :
0 10 20 30 40 50 60 0 20 40 60 80 100 0 10 20 30 40 50 60 70
Epoch Epoch Epoch
Vanishing Gradient Case on Oscillating Loss Case on Dying ReLU Case on
CIFAR-10 dataset MNIST dataset MNIST dataset

1.19x more training time on buggy models, 1% more training on normal models
1% more memory overhead, 1% more overhead in automatically searching solutions
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Large Model ) Stars 1k
Safety, Security, and Privacy

Al Jailbreak

[2024/11] In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models
[2024/11] “"Moralized " Multi-Step Jailbreak Prompts: Black-Box Testing of Guardrails in Large Language Models for Verbal mtacksm

[2024/11] Preventing Jailbreak Prompts as Malicious Tools for Cybercriminals: A Cyber Defense Perspective m
[2024/11] GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs I’.’B
[2024/11] Rapid Response: Mitigating_LLM Jailbreaks with a Few Examples 25 e

[2024/11] JailbreakLens: Interpreting Jailbreak Mechanism in the Lens of Representation and Cl:tuitm

[2024/11] The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense m
[2024/11] SequentialBresk: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains

[2024/11] MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogus m
[2024/11] What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Aﬂacksm

[2024/11] SQL Injection Jailbreak: a structural disaster of large language models l!:l

[2024/10] Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models m
[2024/10] Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector Eﬂ

[2024/10] RobustkV: Defending Large Language Models against Jailbreak Attacks via KV Eviction m

[2024/10] You Know What I'm Saying: Jailbreak Attack via Implicit Reference o

[2024/10] Adversarial Attacks on Large Language Models Using Regularized Relaxation I".":l

[2024/10] SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models m m
[2024/10] AdwWeb: Controllable Black-box Attacks on VLM-powered Web Agents m@

[2024/10] Feint and Attack: Attention-Based Strategies for Jailbreaking and PmtEcﬁnng

[2024/10] Faster- GCG: Efficient Discrete Optimization Jailbreak Attacks against Aligned Large Language Models E:I

[2024/10] Jailbreaking and Mitigation of Vulnerabilities in Large Language Models m
[2024/10] Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents m

12024/10] SoK: Prompt Hacking of Large Language Models X1

[2024/10] Derail Yourself: Multi-turn LLM Jailbreak Attack through Seif-discovered Cluesm

[2024/10] Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation m

[2024/10] BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking_of Large Language Modeis
12024/10] RePD: Defending Jailbreak Attack through a Retrieval-based Prompt Decomposition Process [

[2024/10] AutoDAN-Turbo: A Lifelong Agent for Strateqy Self-Exploration to Jailbreak LLMs m

[2024/10] Roet Defence Strategies: Ensuring Safety of LLM at the Decoding Level m@

[2024/10] Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step

[2024/10] Functional Homotopy: Smoothing Discrete Optimization via Continuous Parameters for LLM Jailbreak Atta:ksm
[2024/10] Hamessing Task Overload for Scalable Jailbreak Attacks on Large Language Modelsm

[2024/10] FlipAttack: Jailbreak LLMs via thgmgm

[2024/10] Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models m
[2024/10] VLM Guard: Defending VLMs against Malicious Prompts via Uniabeled Dats 0 B2

[2024/10] Adversarial Suffixes May Be Features Too! m

[2024/08] Multimodal Pragmatic Jailbreak on Text-to-image Models m

[2024/09] Read Qver the Lines: Attacking LLMs and Toxicity Detection Systems with ASCH Art to Mask Profanity E:I

[2024/09] RED QUEEN: Safeguarding Large Language Models against Concealed Multi-Turn Jailbreaking EB
12024/08] MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [0 [ESEa

[2024/09] PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Aggmachm

[2024/08] Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs N
[2024/09] AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs m
[2024/08] Unleashing Worms and Extracting Data: Escalating the Qutcome of Attacks against RAG-based Inference in Scale and

C2. Copyright

[2024/11] Sok: Watermarking for Al-Generated Content [ EZ
[2024/11] CDL: Copyrighted Data Identification in Diffusion Models
[2024/11] CopyrightMeter: Revisiting Copyright Protection in Text to-image Models ;

[2024/11] WaterPark: A Robustness Assessment of Language Model Watermaming@
[2024/11] One Prompt to Verify Your Models: Black-Box Text-to-lmage Models Verification via Non-Transferable Adversarial Attacks

[2024/11] Debiasing Watermarks for Large Language Models via Maximal Coupling m
[2024/11] CLUE-MARK: Watermarking Diffusion Models using CLwE EEES]
[2024/11] SoK: On the Role and Future of AIGC Watermarking in the Era of Gen-Al m

[2024/11] Conceptwm: A Diffusion Model Watermark for Concept Protection | Difusson |

[2024/11] LLM App Squatting and Cloning [
[2024/11] InvisMark: Invisible and Robust Watermarking for Al-generated Image Provenance m

[2024/11] Revisiting the Robustness of Watermarking to Paraphrasing Attacks I!:I
[2024/11] ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization C

[2024/10] Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection

[2024/10] Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models

[2024/10] Inevitable Trade-off between Watermark Strength and Speculative Sampling Efficiency for Language Models m

[2024/10] Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances
[2024/10] Provably Robust Watermarks for Open-Source Language Models m
[2024/10] REEF: Representation Encoding Fingerprins for Large Language Models m

[2024710] CoreGuard: Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge Deployment IEI

[2024710] NSmark: Mull Space Based Black-box Watermarking Defense Framework for Pre-trained Language Modeism

[2024/10] UTF:Undertrained Tokens as Fingerprints A Novel Approach to LLM Identification m
[2024/10] FregMark: Frequency-Based Watermark for Sentence-Level Detection of LLM-Generated Tex:m

[2024/10] MergePrint: Robust Fingerprinting against Merging Large Language Models m
[2024/10] An undetectable watermark for generative image models i 3
[2024/10] WAPITI: A Watermark for Finetuned Open-Source LLMs m

[2024/10] Signal Watermark on Large Language Models IEI

[2024/10] Ward: Provable RAG Dataset Inference via LLM Wahem\arksm m

[2024/10] Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice E
[2024/10] Can Watermarked LLMs be Identified by Users via Crafted Prompts? E

[2024/10] A Watermark for Black-Box Language Models I‘-’:l

[2024/10] Optimizing Adaptive Attacks against Content Watermarks for Language Models m
[2024/10] Discovering Clues of Spoofed LM Watermarksm

[2024/08] Dormant: Defending against Pose-driven Human Image Animation Q
[2024/08] A Certified Robust Watermark For Large Language Models I’.’B
[2024/08] Multi-Designated Detector Watermarking for Language Models m
[2024/08] Measuring Copyright Risks of Large Language Mode| via Partial Information Probing m
[2024/09] Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending
[2024/09] PersonaMark: Personalized LLM watermarking for model protection and user attribution m
[2024/09] FP-VEC: Fingerprinting Large Language Models via Efficient Vector Addition m

[2024/08] Watermarking Techniques for Large Language Models: A Survey m
IFNTAME MFEMark- An Frendahle and Brbict fnline Watermeark for |1 M _fanarsted Malicinis ©od- 0 EZEES




