

2024 4th International Symposium on Artificial Intelligence and Big Data (AIBĎF 2024)

of Education Engineering Research Center for Cyber-Physical Systems

Security Analysis of Machine Learning Lifecycle

Zhengyu Zhao (赵正宇) Xi'an Jiaotong University (西安交通大学) 2024/12/28

Success of AI

(Own and Derived) Problems of AI

Our Group: Security Analysis of ML Lifecycle

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

OOD&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

ICML'24, CVPR'24 AAAI'24, TIFS'24

Our Group: Real-world Application Scenarios

Identity Authentication

Behavior Analysis

AISEC Lab

Autonomous Driving

Smart Finance

Security Analysis of ML Lifecycle

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

OOD&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

ICML'24, CVPR'24 AAAI'24, TIFS'24

Security Analysis of ML Lifecycle: Four Studies

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

00D&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

Noisy Examples

Adversarial Examples

Intentional (optimized)

Misalignment

Loss function: $x' = \arg \max d(y, y_{\text{bird}})$

x

L₂-norm:

$$d = \Delta x_1^2 + \Delta x_2^2 + ...;$$
 total value

$$L_{\infty}$$
-norm:

 $d = \max(\Delta x_1, \Delta x_2, ...)$; max value

- [1] Delving into transferable adversarial examples and black-box attacks. Liu et al. ICLR 2017.
- [2] Boosting Adversarial Attacks with Momentum. Dong et al. CVPR 2018.
- [3] Feature space perturbations yield more transferable adversarial examples. Inkawhich et al. CVPR 2019.
- [4] Transferable perturbations of deep feature distributions. Inkawhich et al. ICLR 2020.
- [5] Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability. Inkawhich et al. NeurIPS 2020.
- [6] On generating transferable targeted perturbations. Naseer et al. ICCV 2021.

Insight 1: More Iterations

<20 iterations in existing work:

• fail to converge • fine to use many iterations

Insight 2: Better Loss

Attacking Google Vision API

		Services Evalu	ation Ori CE	Po+Trip Logit		
	-	Object localization targe	eted 0 9.00	8.50 19.25		
		Label detection targe	eted 0 4.50	2.25 6.25		
Google Cloud Why Google	Solutions Products Pricing Getting S >	Q Docs Support	English - Console Pricing	Getting Started	٩	Docs Support English
Cloud Vision API			C			
	Landmarks Labels	Text Properties	Safe Search	Objects Labels	Properties	Safe Search
Vision AI		Sky	96%		Boat	93%
Benefits		Chinese Architecture	88%		Sky	92%
Demo	the second and the second and the second and the second se	Travel	81%		Vehicle	86%
Vision API and AutoML		Temple	78%		Watercraft	86%
Vision customers		Composite Material	75%		Naval Architecture	81%
What's new	in the second	Facade	74%		Art	75%
Documentation		Building	73%		Water	72%
Use cases Vision product search	e19a59ad09d18497.png	Shade	72%	e19a59ad09d18497.png	Ship	72%
Designed all self-self-self-self-self-self-self-self-		- Lowanaa Avalaikaakuwa				

 \mathcal{Y}_t = "yawl" (a type of boat)

Security Analysis of ML Lifecycle: Four Studies

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

00D&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

D Monocular Depth Estimation (MDE): Estimate the depth (distance to the camera)

□ Drawbacks of existing attacks (a) and (b):

- Only Affect a small and localized area
- □ Fail at different conditions (e.g., angles, weathers, objects)

□ We propose **3D**²**Fool** to generate robust 3D adversarial textures

Comparisons at various angles

24

D Comparisons at various **weathers**

Comparisons at various objects

Security Analysis of ML Lifecycle: Four Studies

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

00D&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

When the poisoning attack happens, a (fully-trained) target model hasn't existed yet.

Unlearnable Examples: Making Personal Data Unexploitable. Huang et al. ICLR 2021

Frequency principle:

Deep neural networks often learn from low to high frequencies during training^[1,2,3].

[1] On the Spectral Bias of Neural Networks. Rahaman et al. ICML 2019

[2] Training Behavior of Deep Neural Network in Frequency Domain. Xu et al. ICONIP 2019

[3] Theory of the Frequency Principle for General Deep Neural Networks. Luo et al. CSIAM Trans. Appl. Math. 2021

Grayscale-based defense:

JPEG-based defense:

				ours		
Norm	Poisons/Countermeasures	w/o	Gray	JPEG	Gray+JPEG	AT
	Clean (no poison)	94.68	92.41	85.38	83.79	84.99
$L_{\infty} = 8$	DC (Feng et al., 2019) NTGA (Yuan & Wu, 2021) EM (Huang et al., 2021) REM (Fu et al., 2021) SG (van Vlijmen et al., 2022) TC (Shen et al., 2019) HYPO (Tao et al., 2021) TAP (Fowl et al., 2021b) SEP (Chen et al., 2023)	16.30 42.46 21.05 25.44 33.05 88.70 71.54 8.17 3.85	93.07 74.32 93.01 92.84 86.42 79.75 61.86 9.11 3.57	81.84 69.49 81.50 82.28 79.49 85.29 85.45 83.87 84.37	83.09 69.86 83.06 83.00 79.21 82.43 82.94 81.94 82.18	78.00 70.05 84.80 82.99 76.38 84.55 84.91 83.31 84.12
$L_2 = 1.0$	LSP (Yu et al., 2022) AR (Sandoval-Segura et al., 2022)	19.07 13.28	82.47 34.04	83.01 85.15	79.05 82.81	84.59 83.17
$L_0 = 1$	OPS (Wu et al., 2023)	36.55	42.44	82.53	79.10	14.41

effective++

efficient++

Assumption: Attacks **do not** know our defense, i.e., no adaptive attacks.

Security Analysis of ML Lifecycle: Four Studies

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

00D&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

Model training gets heavier and heavier...

Model training may fail sometimes...

Gradient **Explosion**

Designing goals

- To detect the training bugs in real time
 What is the symptoms of problems?
- To repair the buggy model automatically
 - Which is the suitable solution?

Being real-time and automatic is necessary because...

Random Initializer Shuffled Data

Randomness

- 20 layers, 410K parameters
- **ReLU** activation, **glorot_uniform** initializer, **Adam** optimizer

No

- MNIST dataset, **50** epoch, **100** repeated runs

Dying ReLU Not Happened: 20 runs Avg ACC: 85.34%

Dying ReLU Happened: 80 runs Avg ACC: 11.35% Oscillating Loss $0 \sim 9$:50 runs $0 \sim 9$:50 runs $10 \sim 19$:9 runs $20 \sim 29$:8 runs $30 \sim 49$:4 runs

29 runs

Avg Acc: 90.47%

Analyze recorded data for 5 problems

- Vanishing Gradient & Exploding Gradient
- Dying ReLU
- Oscillating Loss
- Slow Convergence

- Detect **316** problems in **262**/495 buggy models on 6 datasets.
- Repair **309** problems with a ratio of **97.78%**.
- Improve average model accuracy by 47.08%.

1.19x more training time on buggy models, 1% more training on normal models
1% more memory overhead, 1% more overhead in automatically searching solutions

Security Analysis of ML Lifecycle: Four Studies

Poison&Deepfake

NDSS'21, ICML'23 ICLR'23, EMNLP'23 ACL'24, NeurIPS'24 ACL'24, NAACL'24

Failures&Bias

ICSE'21, CCS'22 USENIX'22, NDSS'22 NeurIPS'22, FSE'23 ISSTA'23, ISSTA'24

00D&Adv. Example

USENIX'19, CVPR'20 NeurIPS'21, USENIX'23 TIFS'23, TIFS'24 FSE'24, AAAI 2025

Auto-driving&More

Awesome-LM-SSP (1300+ items)

A1. Jailbreak

- [2024/11] In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models
 [Diffusion
- [2024/11] "Moralized" Multi-Step Jailbreak Prompts: Black-Box Testing of Guardrails in Large Language Models for Verbal Attacks
- [2024/11] Preventing Jailbreak Prompts as Malicious Tools for Cybercriminals: A Cyber Defense Perspective
- [2024/11] GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs
- [2024/11] Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
- [2024/11] JailbreakLens: Interpreting Jailbreak Mechanism in the Lens of Representation and Circuit
- [2024/11] Sok: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach
- I2024/111 The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense
- [2024/11] SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
- [2024/11] MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogue
 [LM] Agent
- [2024/11] What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks
- 12024/111 SOL Injection Jailbreak; a structural disaster of large language models
- [2024/10] Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models
- [2024/10] Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector
- [2024/10] RobustKV: Defending Large Language Models against Jailbreak Attacks via KV Eviction IIII Defende
- [2024/10] You Know What I'm Saying: Jailbreak Attack via Implicit Reference O
- [2024/10] <u>How what the saying Jailbleak Attack via implicit Reference</u>
 [2024/10] Adversarial Attacks on Large Language Models Using Regularized Relaxation
- [2024/10] Adversarial Attacks on Large Language Wodels Osing Regularized Relaxation tange
 [2024/10] SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models VLM Benchmark
- [2024/10] Satebench: A satety Evaluation framework for Multimodal Large Language Models
- [2024/10] AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents Web Vebace
- [2024/10] Feint and Attack: Attention-Based Strategies for Jailbreaking and Protecting LLMs
- 🔹 [2024/10] Faster-GCG: Efficient Discrete Optimization Jailbreak Attacks against Aligned Large Language Models 🖽
- [2024/10] Jailbreaking and Mitigation of Vulnerabilities in Large Language Models
- [2024/10] Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents
- [2024/10] SoK: Prompt Hacking of Large Language Models
- [2024/10] Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues
- [2024/10] Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation 📖
- [2024/10] BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
- [2024/10] RePD: Defending Jailbreak Attack through a Retrieval-based Prompt Decomposition Process
- [2024/10] AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs
- [2024/10] Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level LM Defense
- [2024/10] Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step
 [Diffusion]
- [2024/10] Functional Homotopy: Smoothing Discrete Optimization via Continuous Parameters for LLM Jailbreak Attacks 📖
- [2024/10] Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models
- [2024/10] FlipAttack: Jailbreak LLMs via Flipping
- 🔹 [2024/10] Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models 🚥
- [2024/10] VLMGuard: Defending VLMs against Malicious Prompts via Unlabeled Data VLM Defense
- [2024/10] Adversarial Suffixes May Be Features Too!
- [2024/09] Multimodal Pragmatic Jailbreak on Text-to-image Models Diffusion
- [2024/09] Read Over the Lines: Attacking LLMs and Toxicity Detection Systems with ASCII Art to Mask Profanity
- [2024/09] RED QUEEN: Safeguarding Large Language Models against Concealed Multi-Turn Jailbreaking
- [2024/09] MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks 📖 Delense
- [2024/09] PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach
- [2024/09] Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs
- [2024/09] AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs
- [2024/09] Unleashing Worms and Extracting Data: Escalating the Outcome of Attacks against RAG-based Inference in Scale and

C2. Copyright

- [2024/11] SoK: Watermarking for Al-Generated Content 🚥 🔤
- [2024/11] CDI: Copyrighted Data Identification in Diffusion Models
 Diffusion
- [2024/11] CopyrightMeter: Revisiting Copyright Protection in Text-to-image Models
 Diffusion
- [2024/11] WaterPark: A Robustness Assessment of Language Model Watermarking
- [2024/11] One Prompt to Verify Your Models: Black-Box Text-to-Image Models Verification via Non-Transferable Adversarial Attacks
 Diffusion
- [2024/11] Debiasing Watermarks for Large Language Models via Maximal Coupling
- [2024/11] CLUE-MARK: Watermarking Diffusion Models using CLWE Diffusion
- [2024/11] SoK: On the Role and Future of AIGC Watermarking in the Era of Gen-AI
- [2024/11] Conceptwm: A Diffusion Model Watermark for Concept Protection
 Diffusion
- [2024/11] LLM App Squatting and Cloning
- [2024/11] InvisMark: Invisible and Robust Watermarking for Al-generated Image Provenance
- [2024/11] Watermarking Language Models through Language Models
- [2024/11] Revisiting the Robustness of Watermarking to Paraphrasing Attacks
- [2024/11] ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization
 Diffusion
- [2024/10] Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection
- [2024/10] Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models
 [Diffusion
- [2024/10] Inevitable Trade-off between Watermark Strength and Speculative Sampling Efficiency for Language Models
- [2024/10] Watermarking Large Language Models and the Generated Content: Opportunities and Challenges
- [2024/10] Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances Diffusion
- [2024/10] Provably Robust Watermarks for Open-Source Language Models
- [2024/10] REEF: Representation Encoding Fingerprints for Large Language Models
- [2024/10] CoreGuard: Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge Deployment
- [2024/10] NSmark: Null Space Based Black-box Watermarking Defense Framework for Pre-trained Language Models 📖
- [2024/10] UTF: Undertrained Tokens as Fingerprints A Novel Approach to LLM Identification
- [2024/10] FreqMark: Frequency-Based Watermark for Sentence-Level Detection of LLM-Generated Text
- [2024/10] MergePrint: Robust Fingerprinting against Merging Large Language Models 🛄
- [2024/10] An undetectable watermark for generative image models Diffusion
- [2024/10] WAPITI: A Watermark for Finetuned Open-Source LLMs
- [2024/10] Signal Watermark on Large Language Models
- [2024/10] Ward: Provable RAG Dataset Inference via LLM Watermarks
- [2024/10] Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice
- [2024/10] Can Watermarked LLMs be Identified by Users via Crafted Prompts?
- [2024/10] A Watermark for Black-Box Language Models
- [2024/10] Optimizing Adaptive Attacks against Content Watermarks for Language Models
- [2024/10] Discovering Clues of Spoofed LM Watermarks
- [2024/09] Dormant: Defending against Pose-driven Human Image Animation O Diffusion
- [2024/09] A Certified Robust Watermark For Large Language Models
- [2024/09] Multi-Designated Detector Watermarking for Language Models
- [2024/09] Measuring Copyright Risks of Large Language Model via Partial Information Probing
- [2024/09] Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending
 Diffusion
- [2024/09] PersonaMark: Personalized LLM watermarking for model protection and user attribution
- [2024/09] FP-VEC: Fingerprinting Large Language Models via Efficient Vector Addition
- [2024/08] Watermarking Techniques for Large Language Models: A Survey
- 12024/081 MCGMark: An Encodable and Robust Online Watermark for LLM-Generated Malicious Code 📖 🚥

SECURIN

THEORMARION

Large Model C Stars < 1k

Safety, Security, and Privacy

