

February 17th, 2022

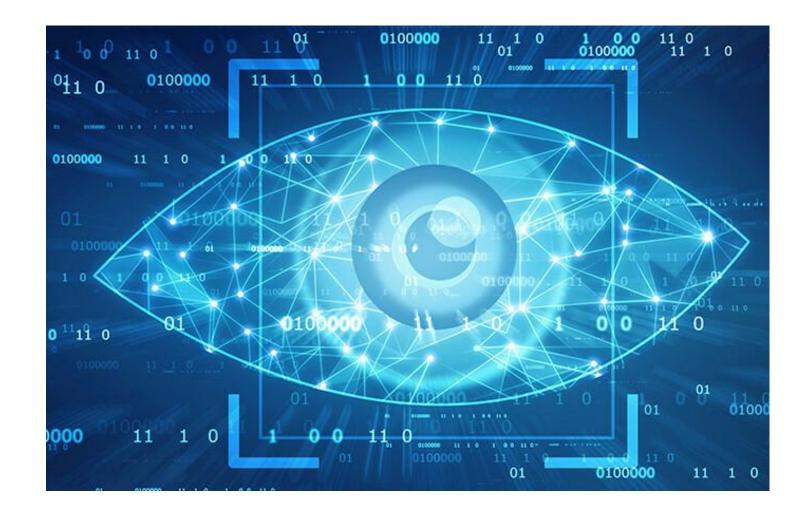
On Success and Simplicity: A Second Look at Transferable Targeted Adversarial Images (对有目标对抗图像迁移性的反思)

Zhengyu Zhao (赵正宇), Zhuoran Liu, Martha Larson Radboud University, The Netherlands

Paper: https://arxiv.org/abs/2012.11207 Code: https://github.com/ZhengyuZhao/Targeted-Tansfer Homepage: https://zhengyuzhao.github.io/

- Background of Computer Vision
- Adversarial Image (对抗图像) and its transferability (迁移性)
- New insights into targeted (有目标) transferability
- Summary & Future work

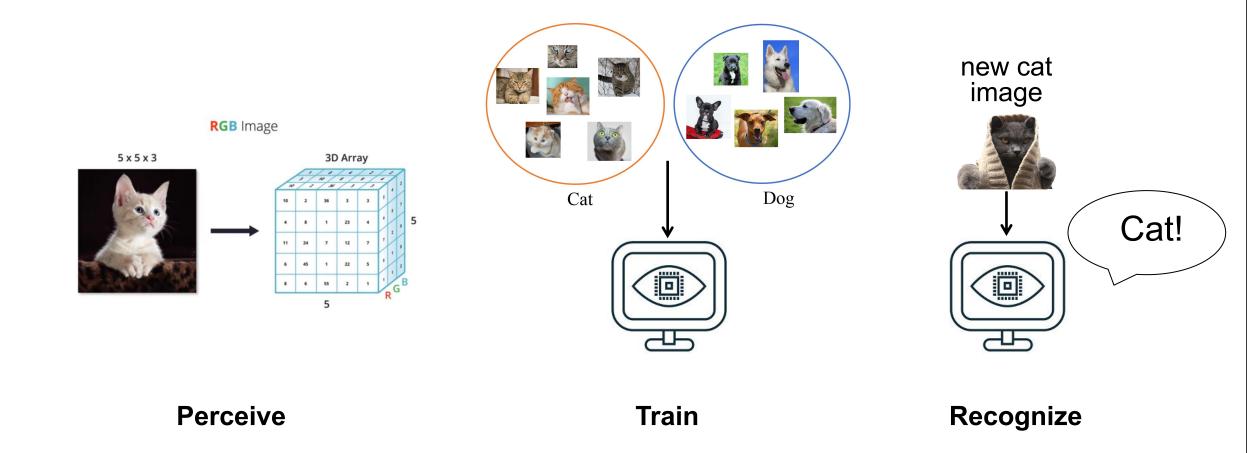
Background: Computer Vision (计算机视觉)

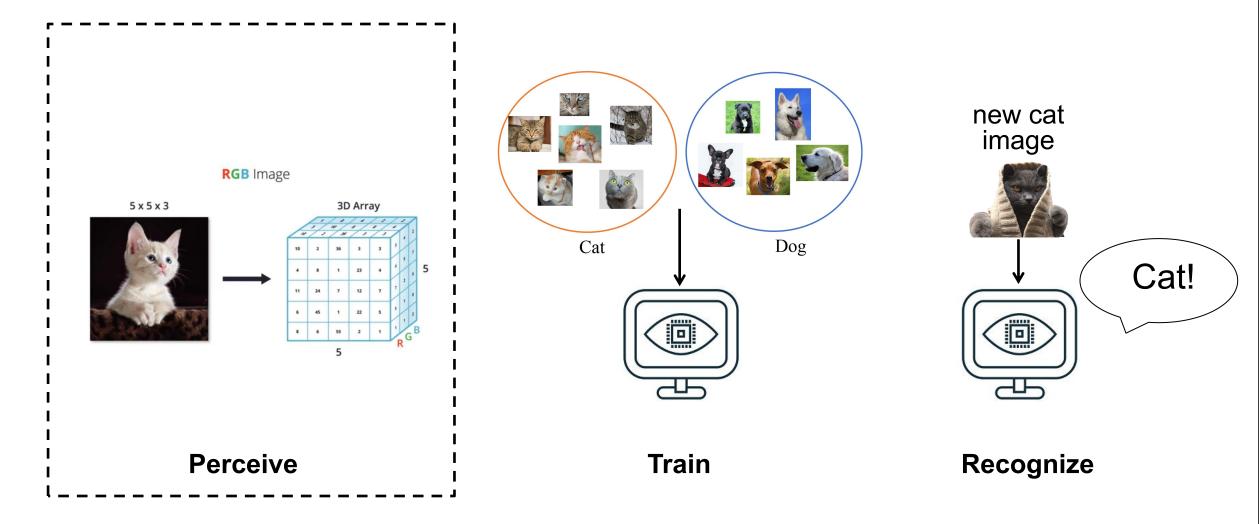


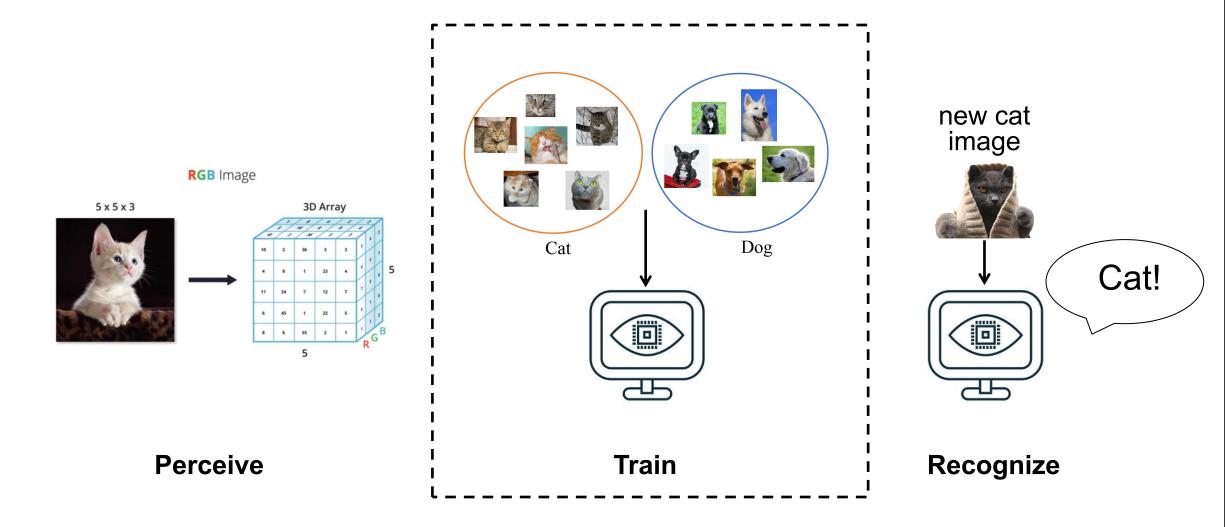
Background: Computer Vision Applications

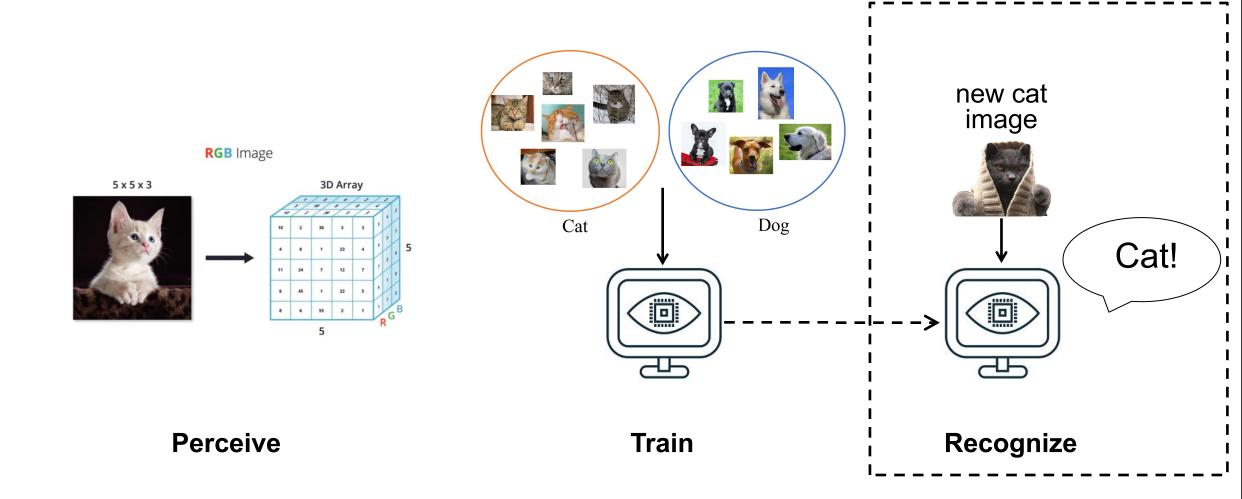


Applications in different areas

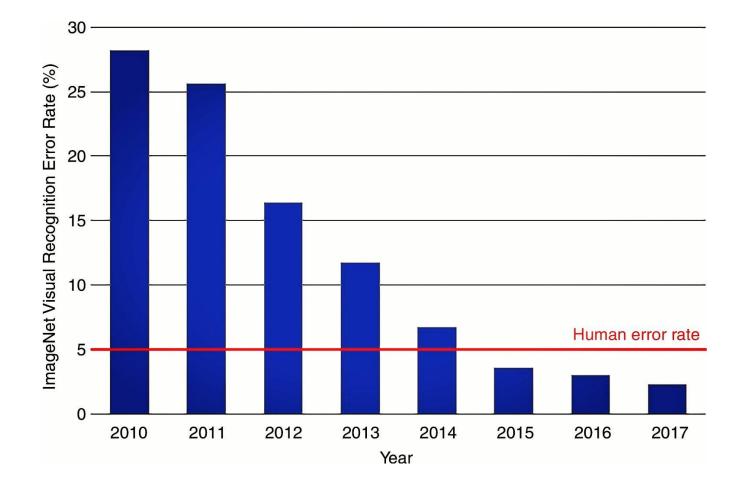




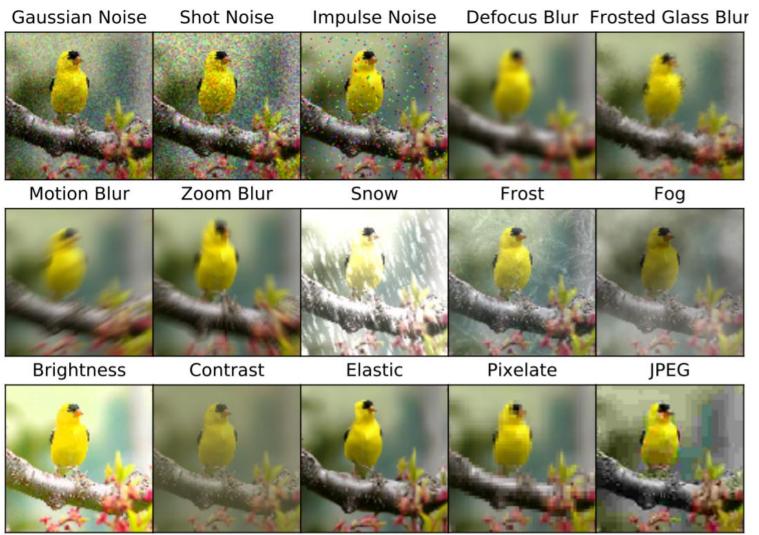




Background: Successful Computer Vision

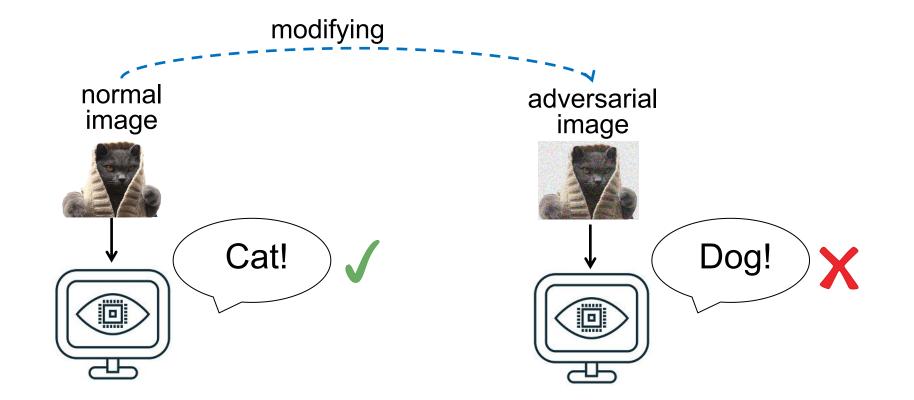


Background: Failed Computer Vision



Abnormal images

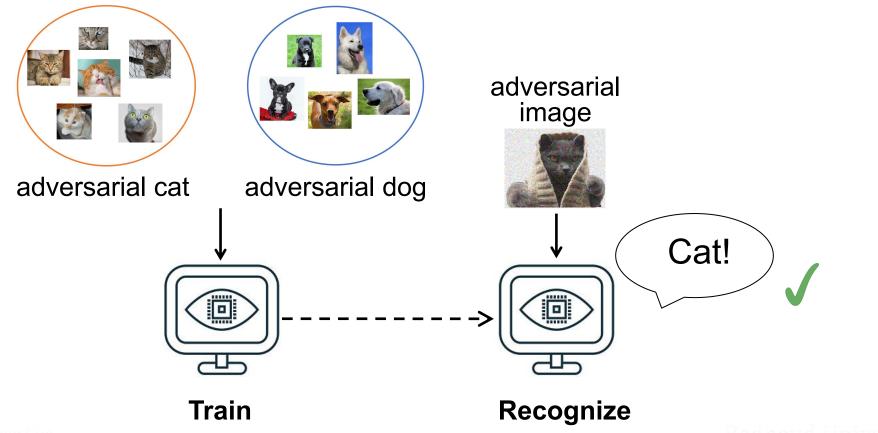
Failed Computer Vision: Adversarial Images (对抗图像)



Adversarial Images: Motivations

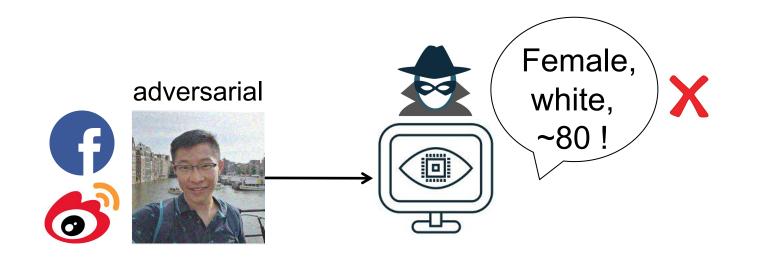
Improve **good** computer vision:

Weaken **bad** computer vision:



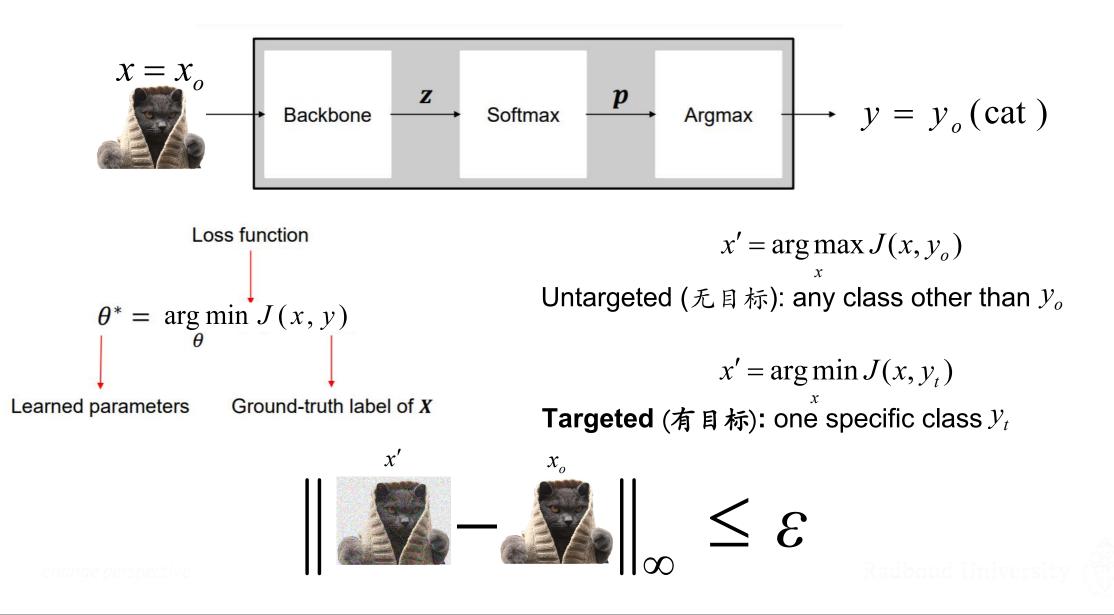
Adversarial Images: Motivations

Improve good computer vision: Weaken bad computer vision:



13

Adversarial Images: How to generate?



(Targeted) Adversarial Images: Optimization

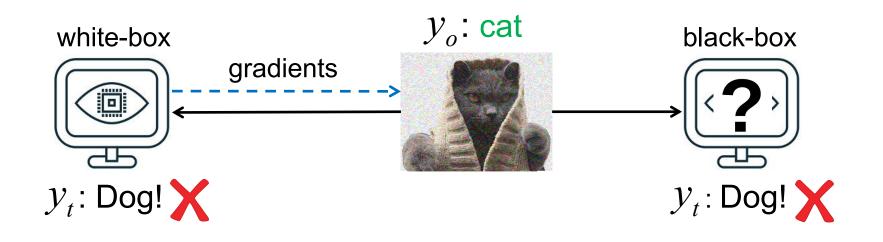
Objective function:
$$x' = \arg \min_{x} J(x, y_t)$$
 s.t. $||x - x_o||_{\infty} \le \varepsilon$

Optimization: Iterative-Fast Gradient Sign Method (I-FGSM)^[1] $x'_{0} = x_{o}, \ x'_{i+1} = x'_{i} - \alpha \cdot \operatorname{sign}(\nabla_{x}J(x'_{i}, y_{t}))$ $x'_{i+1} \leftarrow \operatorname{clip}(x'_{i+1} - x_{o}, -\varepsilon, \varepsilon)$

1. Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017

15

(Targeted) Adversarial Images: Transferability



Targeted Transferability via Iterative Methods

Iterative-Fast Gradient Sign Method (I-FGSM)^[1]: $x'_0 = x_o$, $x'_{i+1} = x'_i - \alpha \cdot \operatorname{sign}(\nabla_x J(x'_i, y_i))$

- Gradient stabilization^[2,3] e.g. momentum-based^[2]:

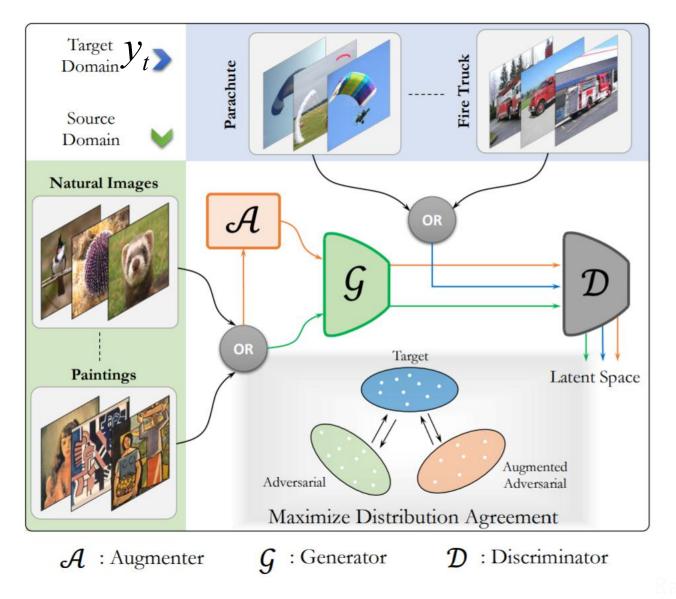
$$g_{i+1} = \mu \cdot g_i + \frac{\nabla_{\boldsymbol{x}} J(\boldsymbol{x}'_i, y_t)}{\|\nabla_{\boldsymbol{x}} J(\boldsymbol{x}'_i, y_t)\|_1}$$
$$\boldsymbol{x}'_{i+1} = \boldsymbol{x}'_i - \alpha \cdot \operatorname{sign}(\boldsymbol{g}_i)$$

- Input augmentation^[4,5,6] e.g. random transformations^[5]:

$$\boldsymbol{x}_{i+1}' = \boldsymbol{x}_i' - \alpha \cdot \operatorname{sign}(\nabla_{\boldsymbol{x}} J(T(\boldsymbol{x}_i', p), y_t))$$

- 1. Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017
- 2. Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.
- 3. Lin et al. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. ICLR 2020
- 4. Dong et al. Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks. CVPR 2019
- 5. Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019
- 6. Wang et al. Admix: Enhancing the transferability of adversarial attacks. ICCV, 2021.

Targeted Transferability via Generative Methods



Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021

Iterative vs. Generative Methods

Iterative methods Generative methods VS. Single Input image Massive additional Data Model: 1 × target-agnostic model 1000 × target-specific GANs

(Targeted) Transferability: Iterative methods << Generative methods ullet

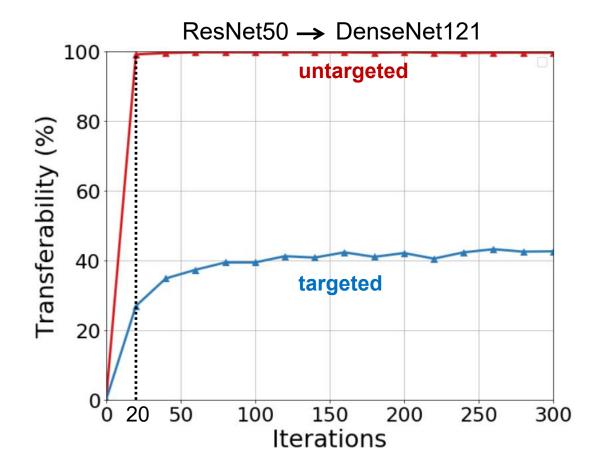
Data:

New Insights into Iterative Methods: Conclusion

(Targeted) Transferability: Iterative methods 🔆 Generative methods ullet

	Targeted Transferability (%)						
	Bound	Attack	D121	V16	D121-ens	V16-ens	
$\ \left\ \left\ \left\ - \left\ \right\ _{\infty}^{x_{o}} \right\ _{\infty} \le \varepsilon$	$\epsilon = 16$	TTP [8] ours	79.6 75.9	78.6 72.5	92.9 99.4	89.6 97.7	
	$\epsilon = 8$	TTP [8] ours	37.5 44.5	46.7 46.8	63.2 92.6	66.2 87.0	

New Insights into Iterative Methods: More Iterations

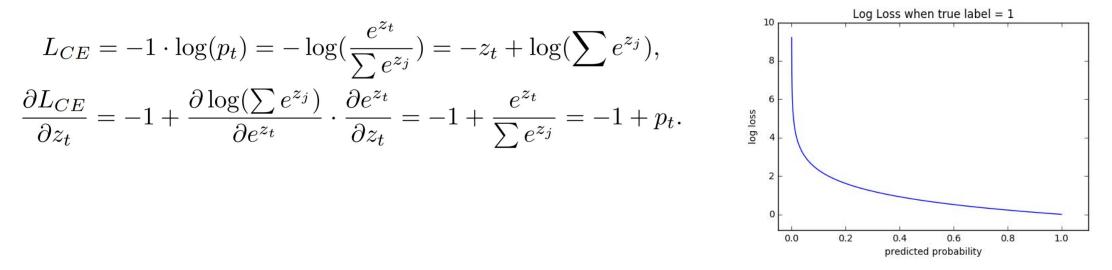


Few (≤ 20) iterations in the literature:

- not converge to optimal
- unrealistic iteration budget.

New Insights into Iterative Methods: Better Loss

Cross-Entropy loss (L_{CE}) causes decreasing gradient problem:

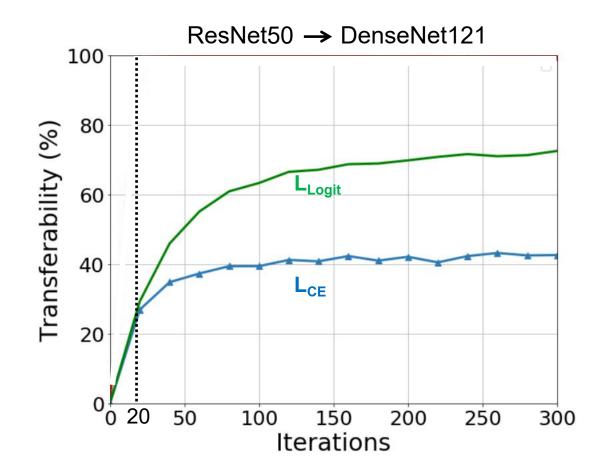


Logit loss (L_{Logit}) is better:

$$L_{Logit} = -z_t, \ \frac{\partial L_{Logit}}{\partial z_t} = -1.$$

change perspective

New Insights into Iterative Methods: Better Loss

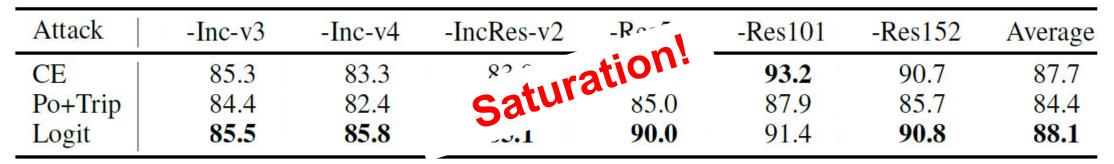


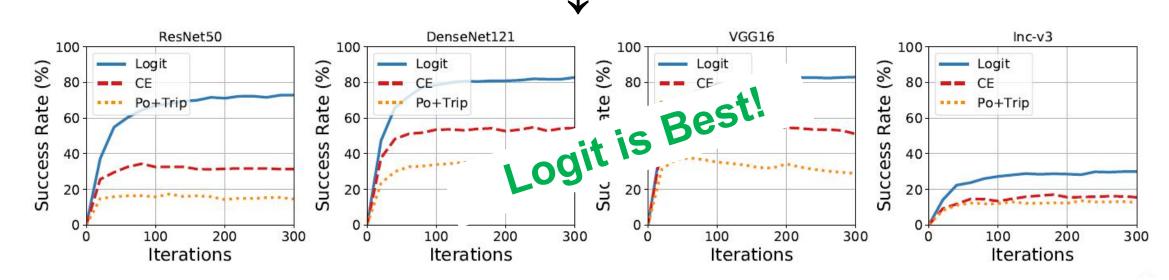
More challenging&realistic scenarios:

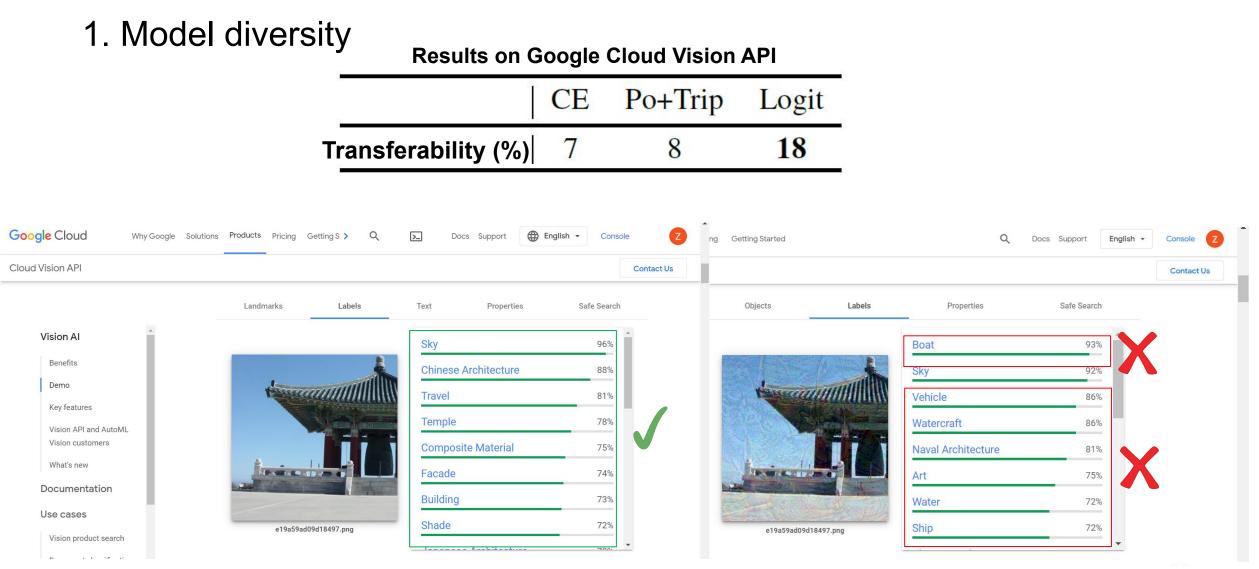
- 1. Model diversity
- 2. Target class diversity

24

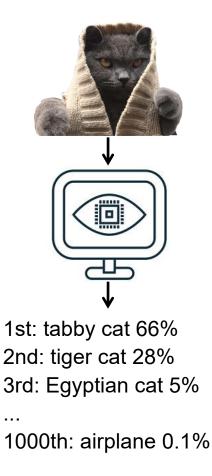
1. Model diversity







2. Target class diversity



Transferability (%) when varying the target class \mathcal{Y}_t .

Attack	2nd	10th	200th	500th	800th	1000th
CE	89.9	76.7	49.7	43.1	37.0	25.1
Po+Trip	82.6	77.6	58.4	53.6	49.1	38.2
Logit	83.8	81.3	75.0	71.0	65.1	52.8

The further the target is, the more difficult it is to transfer. Logit is best.

 \mathcal{Y}_t

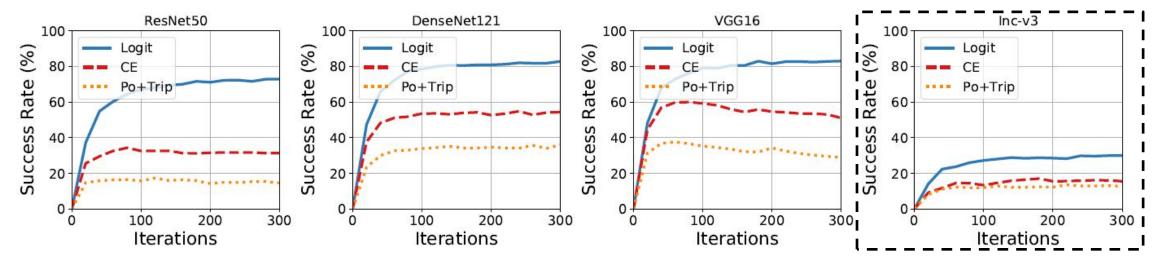
27

Summary

- (Targeted) Transferability: Iterative methods 🛠 Generative methods ${\color{black}\bullet}$
 - More iterations
 - Better loss: Logit
- Better evaluation (More challenging&realistic scenarios) ${}^{\bullet}$
 - Model diversity
 - Target class diversity

Future Work

1. Improve targeted transferability on specific models (Inception).



2. Speed up iterative methods with generative priors.

