On Success and Simplicity: A Second Look at Transferable Targeted Adversarial Images (对有目标对抗图像迁移性的反思)

Zhengyu Zhao (赵正宇), Zhuoran Liu, Martha Larson Radboud University, The Netherlands (NeurIPS 2021)

change perspective

March 3rd, 2022

About Me

• 个人经历

2021.12 - present: **Postdoc** @ CISPA (亥姆霍兹信息安全中心), Germany 2017.09 - 2022.02: **PhD** @ Radboud University, Netherlands

• 研究兴趣

Security & Privacy in Computer Vision: Adversarial (Image) Examples, Data Poisoning (训练数据投毒), Membership Inference (训练成员推理).

zhengyu.zhao@cispa.de zhengyuzhao.github.io

Zhengyu Zhao, Zhuoran Liu, Martha Larson, "Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance", CVPR 2020

Zhengyu Zhao, Zhuoran Liu, Martha Larson, "Adversarial Robustness Against Human-Interpretable Image Color Transformations within Principled Color Filter Space", Under Revision, IEEE T-PAMI. Preliminary version published at BMVC 2020.

On Success and Simplicity: A Second Look at Transferable Targeted Adversarial Images

Zhengyu Zhao (赵正宇), Zhuoran Liu, Martha Larson. NeurIPS 2021

Outline

- Recap adversarial image and targeted transferability
- Our work on revisiting targeted transferability
- Summary & future challenges

Adversarial Images: Definition

Adversarial Images: Formulation

Adversarial Images: Iterative Optimization

Objective function:
$$x' = \underset{x}{\arg\min J(x, y_t)}$$
 s.t. $||x - x_o||_{\infty} \le \varepsilon$

Optimization: Projected Gradient Descent (PGD)

Iterative-Fast Gradient Sign Method (I-FGSM)^[1]

$$x'_{0} = x_{o}, \ x'_{i+1} = x'_{i} - \alpha \cdot \operatorname{sign}(\nabla_{x}J(x'_{i}, y_{t}))$$

 $x'_{i+1} \leftarrow \operatorname{clip}(x'_{i+1} - x_{o}, -\varepsilon, \varepsilon)$

1. Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017

10

Adversarial Images: (Targeted) Transferability

Targeted Transferability via Iterative Approach

Iterative-Fast Gradient Sign Method (I-FGSM): $x'_0 = x_o, x'_{i+1} = x'_i - \alpha \cdot \operatorname{sign}(\nabla_x J(x'_i, y_i))$

- Gradient stabilization^[1,2] e.g. momentum-based^[1]:

$$g_{i+1} = \mu \cdot g_i + \frac{\nabla_{\boldsymbol{x}} J(\boldsymbol{x}'_i, y_t)}{\|\nabla_{\boldsymbol{x}} J(\boldsymbol{x}'_i, y_t)\|_1}$$
$$\boldsymbol{x}'_{i+1} = \boldsymbol{x}'_i - \alpha \cdot \operatorname{sign}(\boldsymbol{g}_i)$$

- Input augmentation^[3,4,5] e.g. random resizing & padding^[4]:

$$\boldsymbol{x}_{i+1}' = \boldsymbol{x}_i' - \alpha \cdot \operatorname{sign}(\nabla_{\boldsymbol{x}} J(T(\boldsymbol{x}_i', p), y_t))$$

- 1. Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.
- 2. Lin et al. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. ICLR 2020
- 3. Dong et al. Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks. CVPR 2019
- 4. Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019
- 5. Wang et al. Admix: Enhancing the transferability of adversarial attacks. ICCV, 2021.

Targeted Transferability via Generative Approach

Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021

Iterative vs. Generative Approaches

Iterative

Generative

- Data: Single Input image
- Model: 1 × target-agnostic classifier

Massive training data 1000 × target-specific generators

Targeted Transferability: Iterative approach << Generative approach

Revisiting Targeted Transferability: Key Message

Targeted Transferability: Iterative approach 🔀 Generative approach

			Targeted Transferability (%)					
			Bound	Attack	D121	V16	D121-ens	V16-ens
x'	$-\frac{x_{o}}{2}$	$\leq \varepsilon$	$\epsilon = 16$	TTP [8] ours	79.6 75.9	78.6 72.5	92.9 99.4	89.6 97.7
		_ 0	$\epsilon = 8$	TTP [8] ours	37.5 44.5	46.7 46.8	63.2 92.6	66.2 87.0

Revisiting Targeted Transferability: More Iterations

Few (≤ 20) iterations in the literature:

- not converge to optimal performance
- unrealistic iteration budget

Revisiting Targeted Transferability: Better Loss

Cross-Entropy Loss (L_{CE}) causes **decreasing gradient** problem:

Logit Loss (L_{Logit}) is better:

$$L_{Logit} = -z_t, \ \frac{\partial L_{Logit}}{\partial z_t} = -1.$$

change perspective

Revisiting Targeted Transferability: Better Loss

More challenging&realistic scenarios:

1. Model diversity 2. Target class diversity

1. Model diversity 2. Target class diversity

1. Model diversity 2. Target class diversity

1. Model diversity 2. Target class diversity

Targeted transferability (%) from best to worst case

Attack	2nd	10th	200th	500th	800th	1000th
CE	89.9	76.7	49.7	43.1	37.0	25.1
Po+Trip	82.6	77.6	58.4	53.6	49.1	38.2
Logit	83.8	81.3	75.0	71.0	65.1	52.8

Ist: tabby cat 66% 2nd: tiger cat 28% 3rd: Egyptian cat 5%

1000th: airplane 0.1%

 \mathcal{Y}_t

Perturbation Semantics

Unbounded Adversarial perturbations

Data/Training-free Targeted UAPs

Success rates (%) of Targeted UAPs (ϵ =16)

Attack	Inc-v3	Res50	Dense121	VGG16
CE	2.6	9.2	8.7	20.1
Logit	4.7	22.8	21.8	65.9

change perspective

Summary

- - More iterations
 - Better (Logit) loss
- Better evaluation with more challenging scenarios
 - Model diversity
 - Target class diversity
- Semantic perturbations for UAPs

Follow-ups using our iterative baseline

1. Slightly robust source model; Other target models (e.g. transformer, CLIP)

Springer et al. A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks. NeurIPS 2021.

2. Data/Training-free targeted UAPs with a better initialization

Li et al. Learning Universal Adversarial Perturbation by Adversarial Example. AAAI 2022

3. Seeking local worst-case perturbations

Qin et al. Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation. OpenReview 2022

. . .

Future Challenge 1

Iterative: lightweight (data-free and model-free) but slow (many iterations).

Generative: heavy (additional data and models) but fast (single forward pass).

Iterative + Generative: Better source classifier with fewer iterations

- 1. Wu et al. Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets. ICLR 2020.
- 2. Guo et al. Backpropagating Linearly Improves Transferability of Adversarial Examples. NeurIPS 2020.
- 3. Zhang et al. Backpropagating Smoothly Improves Transferability of Adversarial Examples. CVPRW 2021
- 4. Zhu et al. Rethinking Adversarial Transferability from a Data Distribution Perspective. ICLR 2022.

Future Challenge 2

Interpreting & improving targeted transferability on specific architectures:

Attack	Sou	rce Model: Res5	0	Source Model: Dense121			
	\rightarrow Dense121	\rightarrow VGG16	\rightarrow Inc-v3	\rightarrow Res50	\rightarrow VGG16	→Inc-v3	
Logit	29.3/63.3/72.5	24.0/55.7/62.7	3.0/7.2/9.4	17.2/39.7/43.7	13.5/35.3/38.7	2.7/6.9/7.6	
Attack	Source Model: VGG16			Source Model: Inc-v3			
	\rightarrow Res50	\rightarrow Dense121	\rightarrow Inc-v3	\rightarrow Res50	\rightarrow Dense121	\rightarrow VGG16	
Logit	3 3/8 7/11 2	3 6/11 7/13 2	0 2/0 7/0 0	0 8/1 6/2 9	1 2/2 8/5 3	0 7/2 2/3 7	

