About Me

Zhengyu Zhao (赵正宇)

zhengyu.zhao@cispa.de zhengyuzhao.github.io

Postdoc @ CISPA Helmholtz Center for Information Security, Germany

PhD @ Radboud University, The Netherlands

Research Interests:

Security (e.g. adversarial example and data poisoning) and Privacy (e.g. membership inference) risks of Machine Learning/Computer Vision.

Vulnerability of Computer Vision to Adversarial Perturbations

Outline

- Background of computer vision (CV) and adversarial images
- Two of our recent projects
- Other related projects

Outline

- Background of computer vision (CV) and adversarial images
- Two of our recent projects
- Other related projects

Computer Vision (CV)

change perspective

Pipeline of Computer Vision

Pipeline of Computer Vision

Success of Computer Vision

change perspective

credit: https://www.synopsys.com/designware-ip/technical-bulletin/computer-vision-lab-life.html

Success of Computer Vision

Vulnerability of Computer Vision

common perturbations

Vulnerability of Computer Vision

face recognition^[1]

self-driving cars^[2]

[1] https://ipvm.com/reports/face-masks

[2] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona

Vulnerability of Computer Vision to Common Perturbations?

Vulnerability of Computer Vision to Adversarial Perturbations!

face recognition^[1]

[1] https://ipvm.com/reports/face-masks

face recognition^[1]

adversarial hat^[2]

[1] https://ipvm.com/reports/face-masks [2] Komkov, Stepan, and Aleksandr Petiushko. "Advhat: Real-world adversarial attack on arcface face id system." ICPR 2021.

self-driving cars^[1]

[1] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona

adversarial sticker [2]

self-driving cars^[1]

[1] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona [2] Eykholt et al. Robust physical-world attacks on deep learning visual classification. CVPR 2018.

Formulate Adversarial Images

$$\theta' = \underset{\theta}{\arg\min} J(\theta, x_{cat}, y_{cat})$$

change perspective

$$\theta' = \underset{\theta}{\operatorname{arg min}} J(\theta, x_{\operatorname{cat}}, y_{\operatorname{cat}})$$
 \checkmark $x' = \underset{x}{\operatorname{arg min}} J(\theta_o, x, y_t)$ targeted

Objective:
$$x' = \arg \min_{x} J(\theta_o, x, y_t)$$
 s.t. $||x' - x_{cat}||_{\infty} \le \varepsilon$

Optimization: Iterative-Fast Gradient Sign Method (I-FGSM)^[1]

$$x'_{0} = x_{cat}, \quad x'_{i+1} = x'_{i} - \operatorname{sign}(\nabla_{x}J(x'_{i}, y_{t}))$$
$$x'_{i+1} \leftarrow \operatorname{clip}(x'_{i+1} - x_{cat}, -\varepsilon, \varepsilon)$$

[1] Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017

Recap of Background

Computer vision success

L. ... vulnerability to common perturbations L. ... adversarial perturbations L. generate adversarial images

Outline

- Background of computer vision (CV) and adversarial images
- Two of our recent projects
- Other related projects

Computer Vision Pipeline

Test-Time Attack

Training-Time Attack

Two projects

On Success and Simplicity: A Second Look at **Transferable Targeted Attacks**. NeurIPS 2021

Data Poisoning against **Adversarial Training**. Under review

Consensus-Challenging Insights

Project 1. Transferable Targeted Attacks

On Success and Simplicity: A Second Look at **Transferable Targeted Attacks**. NeurIPS 2021

ige perspective

Existing Work for Transferable Attacks

Iterative-Fast Gradient Sign Method (I-FGSM):

 $x'_{0} = x_{o}, \ x'_{i+1} = x'_{i} - \alpha \cdot \operatorname{sign}(\nabla_{x} J(x'_{i}, y_{t}))$

Transfer techniques:

- Gradient stabilization

e.g., momentum-based (MI-FGSM)^[1]:

$$g_{i+1} = \mu \cdot g_i + \frac{\nabla_x J(x'_i, y_t)}{\|\nabla_x J(x'_i, y_t)\|_1}$$
$$x'_{i+1} = x'_i - \alpha \cdot \operatorname{sign}(g_i)$$

Input augmentation

e.g., resizing & padding (DI-FGSM)^[2] translation (TI-FGSM)^[3]:

 $\boldsymbol{x}_{i+1}' = \boldsymbol{x}_i' - \alpha \cdot \operatorname{sign}(\nabla_{\boldsymbol{x}} J(T(\boldsymbol{x}_i', p), y_t))$

[1] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.

[2] Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019

[3] Dong et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. CVPR 2019.
Consensus-Challenging Insight

[1] Liu et al. Delving into transferable adversarial examples and black-box attacks. ICLR 2017.

[2] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.

[3] Inkawhich et al. Feature space perturbations yield more transferable adversarial examples. CVPR 2019.

[4] Inkawhich et al. Transferable perturbations of deep feature distributions. ICLR 2020.

[5] Inkawhich et al. Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability. NeurIPS 2020.

[6] Naseer et al. On generating transferable targeted perturbations. ICCV 2021.

Revive I-FGSM: Step 1. Ensemble ($0\% \rightarrow 15\%$ **)**

ResNet50 → DenseNet121 (Iter. =10) I-FGSM: ~0% MI-FGSM: ~0.5% TI-FGSM: ~0.5% DI-FGSM: ~5% MTDI-FGSM: ~15%

Revive I-FGSM: Step 1. Ensemble ($0\% \rightarrow 15\%$ **)**

ResNet50 → DenseNet121 (Iter. =10) I-FGSM: ~0% MI-FGSM: ~0.5% TI-FGSM: ~0.5% DI-FGSM: ~5% MTDI-FGSM: ~15%

Mostly MI-FGSM in existing work

Revive I-FGSM: Step 2. More Iterations ($15\% \rightarrow 42\%$ **)**

Revive I-FGSM: Step 2. More Iterations ($15\% \rightarrow 42\%$ **)**

<20 iterations in existing work:

fail to converge
 unnecessary constraint

Revive I-FGSM: Step 3. Better Loss

Cross-Entropy Loss (L_{CE}) causes **decreasing gradient** problem:

Revive I-FGSM: Step 3. Better Loss

Cross-Entropy Loss (L_{CE}) causes **decreasing gradient** problem:

Logit Loss (L_{Logit}) is better:

$$L_{Logit} = -z_t, \ \frac{\partial L_{Logit}}{\partial z_t} = -1.$$

change perspective

Revive I-FGSM: Step 3. Better Loss ($42\% \rightarrow 72\%$ **)**

Other Analyses: Real-World Attacks

		Services	Evaluation	Ori	CE	Po+Trip	Logit		
		Object localization	non-targeted targeted	31.50 0	53.00 9.00	51.75 8.50	62.50 19.25		
		Label detection	non-targeted targeted	9.75 0	34.00 4.50	22.50 2.25	35.00 6.25		
gle Cloud Why Google	Solutions Products Pricing Getting S >	Q Docs S	upport	onsole	Pricing	Getting Started		c	Docs Support English
Vision API				C					
	Landmarks Label	s Text	Properties Safe Se	arch		Objects	Labels	Properties	Safe Search
Vision Al	Landmarks Label	s Text	Properties Safe Se	arch		Objects	Labels	Properties	Safe Search
Vision AI Benefits	Landmarks Label	s Text Sky Chinese Arch	Properties Safe Se 96 jitecture 88	arch		Objects	Labels	Properties	Safe Search
Vision Al Benefits Demo	Landmarks Label	s Text Sky Chinese Arch Travel	Properties Safe Se 96 itecture 88 81	**************************************		Objects	Labels	Properties Boat Sky Vehicle	Safe Search 93% 92% 86%
Vision AI Benefits Demo Key features	Landmarks Label	s Text Sky Chinese Arch Travel Temple	Properties Safe Se 96 itecture 88 81 78	**************************************	,	Objects	Labels	Properties Boat Sky Vehicle Watercraft	Safe Search 93% 92% 86% 86%
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers	Landmarks	s Text Sky Chinese Arch Travel Temple Composite M	Properties Safe Se 96 itecture 88 81 78 Naterial 75	arch	,	Objects	Labels	Properties Boat Sky Vehicle Watercraft Naval Architecture	Safe Search 93% 92% 86% 86% 81%
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers What's new	Landmarks Label	s Text Sky Chinese Arch Travel Temple Composite M Facade	Properties Safe Se 96 itecture 88 81 78 Iaterial 75 74	arch		Objects	Labels	Properties Boat Sky Vehicle Watercraft Naval Architecture Art	Safe Search
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers What's new Documentation	Landmarks Label	s Text Sky Chinese Arch Travel Temple Composite M Facade Building	Properties Safe Se 96 itecture 88 81 78 faterial 75 74	arch		Objects	Labels	Properties Boat Sky Vehicle Watercraft Naval Architecture Art Water	Safe Search
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers What's new Documentation Use cases	Landmarks Label	s Text Sky Chinese Arch Travel Temple Composite N Facade Building Shado	Properties Safe Se 96 itecture 88 81 1aterial 75 74 73	arch		Objects	Labels	Properties Boat Sky Vehicle Watercraft Naval Architecture Art Water	Safe Search

[8] Zhao et al. The Importance of Image Interpretation: Patterns of Semantic Misclassification in Real-World Adversarial Images. MMM 2023.

Other Analyses: Perturbation Semantics

without *e*

Targeted Universal Adversarial Perturbations (UAPs)^[1]

Success rates (%) of Targeted UAPs (ϵ =16)						
Attack	Inc-v3	Res50	Dense121	VGG16		
CE	2.6	9.2	8.7	20.1		
Logit	4.7	22.8	21.8	65.9		

with ϵ =16

adboud University

[1] Moosavi-Dezfooli et al. Universal Adversarial Perturbations. CVPR 2017.

Iterative (I-FGSM) vs. Generative

- Data: Single Input image
- Model: 1 × surrogate classifier

[1] Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021

Iterative (I-FGSM) vs. Generative

		Targeted Transferability (%)				
	Bound	Attack	D121	V16	D121-ens	V16-ens
3	$\epsilon = 16$	TTP [8] ours	79.6 75.9	78.6 72.5	92.9 99.4	89.6 97.7
_	$\epsilon = 8$	TTP [8] ours	37.5 44.5	46.7 46.8	63.2 92.6	66.2 87.0

[8] Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021

Summary of Project 1

- 3 steps to revive I-FGSM
 - ensemble
 - more iterations
 - better (logit) loss

- Other Analyses
 - real-world attacks
 - targeted UAPs
 - iterative (I-FGSM) vs. generative

Summary of Project 1

- 3 steps to revive I-FGSM
 - ensemble
 - more iterations
 - better (logit) loss

- Other Analyses
 - real-world attacks
 - targeted UAPs
 - iterative (I-FGSM) vs. generative

"God is in the details"

Future Work

Why transferable?

and/or Model similarity Res50 \rightarrow Dense121: ~70% \cong Res50 \rightarrow Incv3: ~10%

Future Work

Why transferable?

and/or Model similarity Res50 \rightarrow Dense121: ~70% \bigcirc Res50 \rightarrow Incv3: ~10% \fbox

Zhao et al. Towards Good Practices in Evaluating Transfer Adversarial Attacks. arXiv 2022
https://github.com/ZhengyuZhao/TransferAttackEval

"We design good practices in evaluating transfer adversarial attacks. We systematically categorize 40+ recent attacks and comprehensively evaluate 23 representative ones against 9 defenses on ImageNet."

change perspective

Two projects

On Success and Simplicity: A Second Look at **Transferable Targeted Attacks**. NeurIPS 2021

Data Poisoning against **Adversarial Training**. Under review

Project 2. Poisoning against Adversarial Training

Data Poisoning against **Adversarial Training**. Under review

Adversarial Training for Adversarial attacks

Adversarial Training for Adversarial attacks

Adversarial Training for Poisoning Attacks

Adversarial Training for Poisoning Attacks

(Poisoned) Adversarial Training

Adversarial Training for Poisoning Attacks

[1] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurIPS 2021.

Consensus-Challenging Insights

[1] Fowl et al. Adversarial Examples Make Strong Poisons. NeurIPS 2021.

- [2] Huang et al. Unlearnable Examples: Making Personal Data Unexploitable. ICLR 2021.
- [3] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurIPS 2021.
- [4] Wang et al. Fooling Adversarial Training with Inducing Noise. arXiv 2021.
- [5] Fu et al. Robust Unlearnable Examples: Protecting Data Against Adversarial Learning. ICLR 2022.
- [6] Tao et al. Can Adversarial Training Be Manipulated By Non-Robust Features? NeurIPS 2022.

(Clean) adversarial/standard training

Inter-class entanglement (ours)

(Clean) adversarial/standard training

Inter-class entanglement (ours) $F(\boxed{a} + \boxed{a}) \neq F(\boxed{a} + \boxed{a})_{(a)}$ $F(\boxed{a} + \boxed{a}) \approx F(\boxed{a} + \boxed{a})_{(b)}$

(Clean) adversarial/standard training

Test Acc: 84.88%

(Clean) adversarial/standard training

Test Acc: 84.88%

≈ discarding 83% training data!

(Clean) adversarial/standard training

Test Acc: 84.88%

Whole-class swap (existing)

$$F(\boxed{1} + \boxed{1}) \approx F(\boxed{1})$$
$$F(\boxed{1} + \boxed{1}) \approx F(\boxed{1})$$

$$x' = \arg\min_{x} J(x, y_{t})$$

$$oldsymbol{\mu} = rac{1}{|\mathcal{X}|} \sum_{oldsymbol{x} \in \mathcal{X}} F_{L-1}^*(oldsymbol{x}) \qquad \begin{aligned} \mathcal{L}_{ ext{push}} &= \max_{oldsymbol{\delta}^{ ext{poin}}} \|F_{L-1}^*(oldsymbol{x} + oldsymbol{\delta}^{ ext{poin}}) - oldsymbol{\mu}_y\|_2 \text{ (a)} \ \mathcal{L}_{ ext{pull}} &= \min_{oldsymbol{\delta}^{ ext{poin}}} \|F_{L-1}^*(oldsymbol{x} + oldsymbol{\delta}^{ ext{poin}}) - oldsymbol{\mu}_{y'}\|_2 \text{ (b)} \end{aligned}$$

Results

Table 2: Evaluating INF on different datasets.

Figure 2: Evaluating INF against three different well-known adversarial training frameworks.

Results

Table 5: Transferability of INF poisons from ResNet-18 to other model architectures.

Poison Method \setminus Target	ResNet-18	ResNet-34	VGG-19	DENSENET-121	MOBILENETV2
NONE (CLEAN)	84.88	86.58	75.99	87.22	80.11
INF	71.57	73.05	64.66	74.35	67.21

Table 6: Evaluating INF against defenses that apply both data augmentations and AT.

DEFENSE	CLEAN TEST ACCURACY (%)
NONE (CLEAN)	84.88
ADVERSARIAL TRAINING	71.57
+RANDOM NOISE	71.88
+JPEG COMPRESSION	70.40
+MIXUP (ZHANG ET AL., 2018)	71.84
+CUTOUT (DEVRIES AND TAYLOR, 2017)	69.81
+CUTMIX (YUN ET AL., 2019)	68.85
+GRAYSCALE (LIU ET AL., 2021)	68.67

NAMPORA DILLYS

Other Results

- Poison only partial training data
- Adaptive defense to our attack strategy/algorithm
- Adaptive defense with adapted adversarial training

. . .

Standard Training (ST) vs. Adversarial Training (AT)

(Clean) Adversarial/Standard training

Inter-class entanglement (ours)

Standard Training (ST) vs. Adversarial Training (AT)

$$\mathcal{L}_{\text{push}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1}^*(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_y\|_2$$

change perspective

Standard Training (ST) vs. Adversarial Training (AT)

$$\mathcal{L}_{\text{push}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1}^*(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_y\|_2$$

Hybrid Attack against Unknown Defense

$$\mathcal{L}_{\text{push}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1}^{*}(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y}\|_{2}$$

$$\downarrow$$

$$\mathcal{L}_{\text{hybrid}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1,\text{ST}}^{*}(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y,\text{ST}}\|_{2} + \lambda \|F_{L-1,\text{AT}}^{*}(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y,\text{AT}}\|_{2}$$

Hybrid Attack against Unknown Defense

$$\mathcal{L}_{\text{push}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1}^{*}(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y}\|_{2}$$

$$\downarrow$$

$$\mathcal{L}_{\text{hybrid}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1,\text{ST}}^{*}(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y,\text{ST}}\|_{2} + \lambda \|F_{L-1,\text{AT}}^{*}(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y,\text{AT}}\|_{2}$$

METHOD	0/055	1/055	0/055	10/055	OPTIMAL
$(\epsilon_{\rm poi} = 8/255) \setminus \epsilon_{\rm adv}$	0/255	4/255	8/255	10/255	TEST ACC.
NONE (CLEAN)	94.59	90.31	84.88	73.78	94.59
ADVPOISON	9.91	88.98	83.11	71.31	88.98
REM	25.59	46.57	84.21	85.76	85.76
ADVIN	77.31	90.08	86.76	72.16	90.08
UNLEARNABLE	25.69	90.47	84.91	79.81	90.47
HYPOCRITICAL	74.06	91.18	84.96	73.33	91.18
HYPOCRITICAL+	75.22	84.82	86.56	82.26	86.56
OURS	83.10	75.39	71.51	63.73	83.10
OURS (HYBRID)	12.93	76.55	74.30	65.75	76.55

Summary of Project 2

• Poisoning AT is possible based on a new attack perspective

Inter-class entanglement

- Robust features for poisoning AT, non-robust for ST
- Hybrid attack

Future Directions

- Possible defenses against our new attack
 - general: training techniques for entangled/noisy data?
 - specific: detecting/pre-filtering our attack?
- Better hybrid attack than $\mathcal{L}_{\text{hybrid}} = \max_{\boldsymbol{\delta}_{\text{poi}}} \|F_{L-1,\text{ST}}^*(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) \boldsymbol{\mu}_{y,\text{ST}}\|_2 + \lambda \|F_{L-1,\text{AT}}^*(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) \boldsymbol{\mu}_{y,\text{AT}}\|_2$
 - more effective
 - more efficient

Paper and code will be released in January!

Outline

- Background of computer vision (CV) and adversarial images
- Two of our recent projects
- Other related projects

Imperceptible Perturbations

Zhao et al. Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance. CVPR 2020.

Perceptible yet Stealthy Perturbations

Zhao et al. Adversarial Image Color Transformations in Explicit Color Filter Space. Under review by IEEE TIFS. Preliminary version at BMVC 2020.

Adversarial attacks on Image Retrieval

Liu et al. Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval. ICMR 2019

Thank you!

Zhengyu Zhao (赵正宇)

Zhengyuzhao.github.io

☆ zhengyu.zhao@cispa.de

Research Interests:

Security (e.g. adversarial example and data poisoning) and Privacy (e.g. membership inference) risks of Machine Learning/Computer Vision.