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Research focus:

Analyzing the vulnerability of deep neural networks to various attacks, e.g., (test-time)

adversarial examples and (training-time) data poisons.
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Outline

« Overview of adversarial images in computer vision
« Two recent projects

* Other related projects
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« Overview of adversarial images in computer vision



Computer Vision (CV)
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Working pipeline of CV




Success of CV
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credit: https://www.synopsys.com/designware-ip/technical-bulletin/computer-vision-lab-life.html



https://www.intelligentautomation.network/decision-ai/news/a-basic-guide-to-ai

Success of CV
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Failure of CV (against Real-world Perturbations)
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Failure of CV (against Real-world Perturbations)

face recognition(] self-driving carf?

[1] https://ipvm.com/reports/face-masks
[2] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona
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AR

average-case (real-world) Image perturbations?
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AR

average-case (real-world) Image perturbations?

l

worst-case (adversarial) Image perturbations!
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Formalize Adversarial Image Perturbations

adversarial
pert '

adyersarial
image
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Stealthy Attacks with Imperceptible Perturbations

adversarial




Real-world — Adversarial Image Perturbations
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face recognitionl!l adversarial mask(2l

[1] https://ipvm.com/reports/face-masks

[2] https://towardsdatascience.com/fooling-facial-detection-with-fashion-d668ed919eb
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Real-world — Adversarial Image Perturbations

self-driving carll adversarial graffitil°]

[1] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona
[2] Eykholt et al. Robust physical-world attacks on deep learning visual classification. CVPR 2018.
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Optimize Adversarial Images x’
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Optimize Adversarial Images X’
8
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Optimize Adversarial Images X’
8

> Backbone Softmax Argmax —+— JV cat
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Optimize Adversarial Images X’
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Objective: x'=argminJ(6,,x,y,) s.t. HX'—Xcat

Optimization: lterative-Fast Gradient Sign Method (I-FGSM)[”

x(,) . roo_ x; — sign(VxJ(X;, Vi ))

cat® xi+1

’ . /
xi+1 A\ Chp('xiﬂ - xcat & 8)

[1] Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017
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Recap

Success of computer vision
L» Failures against real-world perturbations
L. ... adversarial images

L» optimize adversarial images
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Outline

« Two recent projects
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Consensus-Challenging Insights

Mission:
possible (and not hard)

Mission:

(almost) impossible

Existing work(1-N] Ours

23



Project 1. Transferable Targeted Attacks
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Transferable Targeted Attacks

white-box

gradients
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Transferable Targeted Attacks
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Transferable Targeted Attacks

white-box

gradients

reference
model

black-box
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Transfer Techniques

- Gradient stabilization - Data augmentation
e.g., momentum-based (MI-FGSM)!"!: e.g., resizing & padding (DI-FGSM)“!
translation (TI-FGSM)[3]:
Vad (T}, yt)

Vazd(x, i
Ve (@, )4 xl =, —a- sign(VeJ(T(x},p),ut))

Gip1 = Hgi

T;, , =x; — - sign(g;)

[1] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.
[2] Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019
[3] Dong et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. CVPR 2019. 28



Transferable Targeted Attacks
8
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Consensus-Challenging Insight

Impossible for I-FGSM
to achieve targeted
transferability.

Possible and
even SOTA.

Existing work!-6] Ours

[1] Liu et al. Delving into transferable adversarial examples and black-box attacks. ICLR 2017.

[2] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.

[3] Inkawhich et al. Feature space perturbations yield more transferable adversarial examples. CVPR 2019.

[4] Inkawhich et al. Transferable perturbations of deep feature distributions. ICLR 2020.

[5] Inkawhich et al. Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability. NeurlPS 2020.
[6] Naseer et al. On generating transferable targeted perturbations. ICCV 2021.
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Fix I-FGSM: Step 1. Ensemble (0% —15%)

ResNet50 — DenseNet121 (Iter. =10)

I-FGSM: ~0%
MI-FGSM: ~0.5%
TI-FGSM: ~0.5%
DI-FGSM: ~5%
MTDI-FGSM: ~15%

single technique in existing work
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Fix I-FGSM: Step 2. More Iterations (15% —42%)

ResNet50—DenseNet121 (MTDI FGSM)
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<20 iterations in existing work:

« fail to converge - efficiency is not important 39



Fix I-FGSM: Step 3. Suitable Loss

Cross-Entropy Loss (L.g) causes decreasing gradient problem:

Lep = —1-log(p) = log(zeezj) = —2z; + log( E e*),
OLcEk dlog(d e®) Qe et
0z i et 0z i > e TP

Log Loss when true label = 1

predicted probability
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Fix I-FGSM: Step 3. Suitable Loss

Cross-Entropy Loss (L.g) causes decreasing gradient problem:

Lep = —1-log(p) = log(zeezj) = —2 + log(z e*),
OLcr dlog(d e®) Qe g
0z oe*t 0z L+ > e L+ pe
Logit Loss (L, o4i):
OL104i
LLogit — —Xt, Logit = —1.

(9zt

0 Log Loss when true label = 1

L L
0.6 1.0
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Fix I-FGSM:

Step 3. Suitable Loss (42% —72%)

ResNet50—DenseNet121 (MTDI-FGSM)
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Other Analyses: Real-World Attacks

Google Cloud

Cloud Vision API

Vision Al

Benefits
Demo
Key features

Vision APl and AutoML

Vision customers

What's new
Documentation
Use cases

Vision product search

Why Google  Solutions  Products  Pricing  Getting$S »

Landmarks Labels

e19a59ad09d18497.png

[8] Zhao et al. The Importance of Image Interpretation: Patterns of Semantic Misclassification in Real-World Adversarial Images. MMM 2023.
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Other Analyses: Perturbation Semantics

target label: “‘corn” ~ "peacock”

without €

“tennis ball”
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Other Analyses: Targeted Universal Perturbations!’

peacock panda tennis ball

with €=16

[1] Moosavi-Dezfooli et al. Universal Adversarial Perturbations. CVPR 2017.

Success rates (%)

Attack | Inc-v3 Res50 Densel2l VGGI16
2.6 9.2 8.7 201
L0g1t 4.7 22.8 21.8 65.9
38



Other Analyses: I-FGSM (ours) vs. Generative (SOTA)

Ours Generativel'l
e > B
et o B

Z
+ Backbone — Softmax

Argmax —|— ycat

Maximize Distribution Agreement

A : Augmenter g : Generator D : Discriminator

« Data: Single Input image v | Massive training data
 Model: 1 X surrogate classifier 1000 X target-specific generators

[1] Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021 39



Other Analyses: I-FGSM (ours) vs. Generative (SOTA)

Targeted Transferability (%)

Bound Attack | D121 V16 DI12l-ens V16-ens
_ 16| som | 196 786 92.9 89.6

€= ours 759 725 99 4 97.7
. SOTA | 375 46.7 63.2 66.2

== ours 44.5 46.8 92.6 87.0
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Summary of Project 1

3 steps to fix I-FGSM
- ensemble
- more iterations
- suitable (logit) loss

» Other Analyses
- real-world attacks
- universal perturbations
- I-FGSM (data/training-free) vs. generative

41



Summary of Project 1

3 steps to revive I-FGSM
- ensemble
- more iterations
- suitable (logit) loss

» Other Analyses
- real-world attacks
- universal perturbations
- I-FGSM (data/training-free) vs. generative

"God is in the details"

42



Future Work

« Explaining transferability

feature similarity or model similarity

“corn” “tennis ball”

| “peak” N

Res50 — Dense121;: ~70% <
Res50 — Incv3: ~10% w=r

« Benchmarking transferability

Zhao et al. Towards Good Practices in Evaluating Transfer Adversarial Attacks. arXiv 2022
O https://github.com/ZhengyuZhao/TransferAttackEval
- Systematic categorization of 40+ transfer attacks

- 23 representative attacks against 9 representative defenses on ImageNet
- Consensus-challenging insights
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Testing-Stage Attack

adversarial
attack

44



Training-Stage Attack

poisoning
attack
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Project 2. Poisoning Against Adversarial Training
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Adversarial Training-based Defense

poisoning
attack

E adv :
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Adversarial Training-based Defense

poisoning
attack

® (lean sample
e Poisoned sample

Eadv

(Poisoned) Adversarial Training Test

[1] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurlPS 2021.

Epoi=€adv
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Consensus-Challenging Insight

Impossible to poison

Possible (with a new
AT models

attack strategy)

Existing work(-6] Ours

[1] Fowl et al. Adversarial Examples Make Strong Poisons. NeurlPS 2021.

[2] Huang et al. Unlearnable Examples: Making Personal Data Unexploitable. ICLR 2021.

[3] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurlPS 2021.
[4] Wang et al. Fooling Adversarial Training with Inducing Noise. arXiv 2021.

[5] Fu et al. Robust Unlearnable Examples: Protecting Data Against Adversarial Learning. ICLR 2022.

[6] Tao et al. Can Adversarial Training Be Manipulated By Non-Robust Features? NeurlPS 2022.
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Consensus-Challenging Insight

N7

® (lean sample

e Poisoned sample

€poi=€

adv
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Existing Poisoning

clean training
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Our Poisoning

clean training
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Our Poisoning

clean training
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Our Poisoning

existing poisoning
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Our Poisoning

N %

|- ;f*. g Lo =min|[FL (@ 487 - py 2

our poisoning
< 7

Loush = max | F{_ (@ +87) — p |
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Results

- Different datasets

- Different AT frameworks

- Transferability

- Partial data Poisoning training data
- Ensemble defenses

- Adaptive defenses

56



Standard Training (ST) vs. Adversarial Training (AT)

- 84
80 -

fq;; - 82
é 60 —e— ST Poison 30
> —— ST Clean
g x @~ AT Poison [
9 401 ¥ AT Clean | | -
<C g
= ™
" 20- 5 K

- ——— T2

0 1 2 4 8
Robustness of the reference model (€f) Cleath., Eer =0 tosr= 1 Eisr

I
N

Eior = & Bggr = B



Hybrid Attack

reference
model
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Hybrid Attack

reference target
model model

Loush = max [ Ff_y (z +6%) — pr, |12

§poi
|
(=——

Luybria = max | F_y s(@ + 8) = 57l + MFL_y ax(® + 6°) = g il



Hybrid Attack

METHOD | OPTIMAL |
(€poi = 8/255) \ €aav | 0/255 4/255 8/255 16/255 |TEST AccC.,
NONE (CLEAN) 94.59 90.31 84.88 73.78 1 9459
ADVPOISON 991 8898 83.11 71.31 ' 8898 1
REM 2559 46,57 84.21 8576 | 8576
ADVIN 77.31  90.08 86.76 72.16 1 90.08
UNLEARNABLE 25.69 9047 8491 79.81 1 9047
HYPOCRITICAL 74.06 91.18 84.96 73.33 ' 91.18 1
HYPOCRITICAL+ 75.22  84.82 86.56 82.26 ., 86.56 |
OURS 83.10 7539 71.51 63.73 | 83.10 |
OURS (HYBRID) 1295 7655 74.30 65.75 I 76.55
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Summary of Project 2

* Poisoning AT is possible based on a new attack strategy

* Poisoning AT vs. ST
* Hybrid attack

61



Future Directions

* Possible defenses against our new attack
- generic: training techniques for noisy labels?
- specific: detecting/pre-filtering our attack?

* More efficient hybrid attack than




Outline

* Other related projects
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Imperceptible Perturbations
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Adversarial attacks on Image Retrieval
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- On Success and Simplicity: A Second Look at Transferable Targeted Attacks (Project 1)
Zhengyu Zhao, Zhuoran Liu, Martha Larson. NeurlPS 2021.

- Is Adversarial Training Really a Silver Bullet for Mitigating Data Poisoning? (Project 2)
Rui Wen, Zhengyu Zhao, Zhuoran Liu, Michael Backes, Tianhao Wang, Yang Zhang. ICLR 2023.

- Towards Good Practices in Evaluating Transfer Adversarial Attacks
Zhengyu Zhao*, Hanwei Zhang*, Renjue Li*, Ronan Sicre, Laurent Amsaleg, Michael Backes. arXiv 2022.

- Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance
Zhengyu Zhao, Zhuoran Liu, Martha Larson. CVPR 2020.

- Adversarial Image Color Transformations in Explicit Color Filter Space
Zhengyu Zhao, Zhuoran Liu, Martha Larson. BMVC 2020.

- Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval
Zhuoran Liu, Zhengyu Zhao, Martha Larson. ICMR 2019.

D4 zhengyu.zhao@cispa.de @& zhengyuzhao.github.io
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Thank you!

Q&A
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