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Research focus:

Analyzing the vulnerability of deep neural networks to various attacks, e.g., (test-time) 

adversarial examples and (training-time) data poisons.
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• Overview of adversarial images in computer vision

• Two recent projects

• Other related projects

Outline
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Computer Vision (CV)



Working pipeline of CV
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 Train

Cat!

 Test



Success of CV

7credit: https://www.synopsys.com/designware-ip/technical-bulletin/computer-vision-lab-life.html

AlexNet

ResNet

https://www.intelligentautomation.network/decision-ai/news/a-basic-guide-to-ai
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Success of CV



Failure of CV (against Real-world Perturbations)
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  self-driving car[2] face recognition[1]

[1] https://ipvm.com/reports/face-masks
[2] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona

Failure of CV (against Real-world Perturbations) 
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average-case (real-world) Image perturbations?
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average-case (real-world) Image perturbations?

worst-case (adversarial) Image perturbations!
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adversarial
image

 Cat!

clean
image

Formalize Adversarial Image Perturbations

adversarial
perturbations

 Dog!
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adversarial
image

 Cat!

clean
image

Stealthy Attacks with Imperceptible Perturbations

 Cat!  Dog! Cat!
14

ε


x catx

adversarial
perturbations



Real-world → Adversarial Image Perturbations
 

15

face recognition[1]

[1] https://ipvm.com/reports/face-masks
[2] https://towardsdatascience.com/fooling-facial-detection-with-fashion-d668ed919eb

adversarial mask[2]



Real-world → Adversarial Image Perturbations 
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  self-driving car[1] 

[1] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona
[2] Eykholt et al. Robust physical-world attacks on deep learning visual classification. CVPR 2018.

adversarial graffiti[2]
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Optimize Adversarial Images x’
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backpropogation
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backpropogation



Objective:
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 
cats.t.),,(minarg xxyxJx to

x

Optimize Adversarial Images x’

[1] Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017

Optimization: Iterative-Fast Gradient Sign Method (I-FGSM)[1]

)),(sign(, 1cat0 tixii yxJxxxx  

),,clip( cat11   xxx ii



Recap

Success of computer vision

                       Failures against real-world perturbations

                                           ... adversarial images

                                                          optimize adversarial images
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• Overview of adversarial images in computer vision

• Two recent projects

• Other related projects

Outline
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Consensus-Challenging Insights

Existing work[1-N] Ours

  Mission: 
possible (and not hard) 

 

  Mission: 
(almost) impossible 
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Project 1. Transferable Targeted Attacks
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Transferable Targeted Attacks

gradients
xwhite-box
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Transferable Targeted Attacks

gradients
x black-box

transfer

reference
model

target
model

white-box
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Transferable Targeted Attacks

test 
gradients

train 

generalize

gradients
x black-box

transfer

reference
model

target
model

white-box



 Transfer Techniques
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- Gradient stabilization                                             - Data augmentation
   e.g., momentum-based (MI-FGSM)[1] :          e.g., resizing & padding (DI-FGSM)[2]

                                                                                                                                            translation (TI-FGSM)[3]:

[1] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.
[2] Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019
[3] Dong et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. CVPR 2019.
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Consensus-Challenging Insight

Existing work[1-6]

  Impossible for I-FGSM 
to achieve targeted 

transferability. 

[1] Liu et al. Delving into transferable adversarial examples and black-box attacks. ICLR 2017.
[2] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.
[3] Inkawhich et al. Feature space perturbations yield more transferable adversarial examples. CVPR 2019.
[4] Inkawhich et al. Transferable perturbations of deep feature distributions. ICLR 2020.
[5] Inkawhich et al. Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability. NeurIPS 2020.
[6] Naseer et al. On generating transferable targeted perturbations. ICCV 2021.

Ours

  Possible and 
even SOTA. 



Fix I-FGSM: Step 1. Ensemble (0% →15%) 
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        ResNet50       DenseNet121 (Iter. =10)

I-FGSM: ~0%
MI-FGSM: ~0.5%
TI-FGSM: ~0.5%
DI-FGSM: ~5%
MTDI-FGSM: ~15% 

single technique in existing work



Fix I-FGSM: Step 2. More Iterations (15% →42%)
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<20 iterations in existing work:
• fail to converge     • efficiency is not important

        ResNet50→DenseNet121 (MTDI-FGSM)
non-targeted

targeted

20
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Fix I-FGSM: Step 3. Suitable Loss

Cross-Entropy Loss (LCE) causes decreasing gradient problem:
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Logit Loss (LLogit):

Fix I-FGSM: Step 3. Suitable Loss

Cross-Entropy Loss (LCE) causes decreasing gradient problem:
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LCE

LLogit

 ResNet50→DenseNet121 (MTDI-FGSM)

Fix I-FGSM: Step 3. Suitable Loss (42% →72%)

non-targeted
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Other Analyses: Real-World Attacks

= “yawl” (a type of boat)ty
[8] Zhao et al. The Importance of Image Interpretation: Patterns of Semantic Misclassification in Real-World Adversarial Images. MMM 2023.
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Other Analyses: Perturbation Semantics

without ϵ   

target label:



Success rates (%)   
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Other Analyses: Targeted Universal Perturbations[1]

[1] Moosavi-Dezfooli et al. Universal Adversarial Perturbations. CVPR 2017.

with ϵ=16   



• Data:            Single Input image                            Massive training data
• Model:       1×surrogate classifier              1000×target-specific generators

Other Analyses: I-FGSM (ours) vs. Generative (SOTA) 
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                        Ours                                                  Generative[1] 

[1] Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021

caty
catx
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Targeted Transferability (%) 

SOTA

Other Analyses: I-FGSM (ours) vs. Generative (SOTA) 

SOTA



Summary of Project 1 
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• 3 steps to fix I-FGSM
  - ensemble
  - more iterations
  - suitable (logit) loss

• Other Analyses
   - real-world attacks
   - universal perturbations
   - I-FGSM (data/training-free) vs. generative



Summary of Project 1 
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• 3 steps to revive I-FGSM
  - ensemble
  - more iterations
  - suitable (logit) loss

• Other Analyses
   - real-world attacks
   - universal perturbations
   - I-FGSM (data/training-free) vs. generative

"God is in the details"



Future Work
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• Explaining transferability

                          feature similarity                              or                model similarity

Res50 → Dense121: ~70%
Res50 → Incv3:         ~10%

     Zhao et al. Towards Good Practices in Evaluating Transfer Adversarial Attacks. arXiv 2022
     https://github.com/ZhengyuZhao/TransferAttackEval

- Systematic categorization of 40+ transfer attacks 
- 23 representative attacks against 9 representative defenses on ImageNet
- Consensus-challenging insights

• Benchmarking transferability



Testing-Stage Attack
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 Train

Dog!

 Test
adversarial 

attack



Training-Stage Attack
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 Train

Dog!

 Test

poisoning
attack



Project 2. Poisoning Against Adversarial Training 
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 (Poisoned) Standard Training

Dog!

 Test

 (Poisoned) Adversarial Training

Cat!

 Test

ϵpoi

poisoning
attack
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ϵadv

Adversarial Training-based Defense



 (Poisoned) Adversarial Training

Cat!

 Test

ϵadv

ϵpoi ϵpoi=ϵadv

poisoning
attack

[1] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurIPS 2021. 48

Adversarial Training-based Defense



Consensus-Challenging Insight

Existing work[1-6] Ours

  Possible (with a new 
attack strategy) 

 

  Impossible to poison 
AT models 

 

[1] Fowl et al. Adversarial Examples Make Strong Poisons. NeurIPS 2021.
[2] Huang et al.  Unlearnable Examples: Making Personal Data Unexploitable. ICLR 2021.
[3] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurIPS 2021.
[4] Wang et al. Fooling Adversarial Training with Inducing Noise. arXiv 2021.
[5] Fu et al. Robust Unlearnable Examples: Protecting Data Against Adversarial Learning. ICLR 2022.
[6] Tao et al. Can Adversarial Training Be Manipulated By Non-Robust Features? NeurIPS 2022. 49



Consensus-Challenging Insight
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ϵpoi=ϵadv



Existing Poisoning
existing poisoning

 clean training
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Test Acc: 84.88%

Test Acc: 83.11%),(minarg tyxJx
x



Test Acc: 84.88%



Our Poisoning
existing poisoning 

 clean training

   our poisoning
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Test Acc: 84.88%

Test Acc: 83.11%),(minarg tyxJx
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Our Poisoning
existing poisoning 

 clean training

   our poisoning
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Test Acc: 84.88%

Test Acc: 71.57%

Test Acc: 72.99%

Test Acc: 83.11%),(minarg tyxJx
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Test Acc: 84.88%



Our Poisoning
existing poisoning 

 clean training

   our poisoning
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Test Acc: 84.88%

Test Acc: 71.57%

Test Acc: 72.99%

Test Acc: 83.11%),(minarg tyxJx
x



Test Acc: 84.88%

equal to discarding 
83% training data!



Our Poisoning
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   our poisoning

Test Acc: 71.57%

Test Acc: 72.99%



Results

- Different datasets
- Different AT frameworks
- Transferability
- Partial data Poisoning training data
- Ensemble defenses
- Adaptive defenses
...
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Standard Training (ST) vs. Adversarial Training (AT)
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Hybrid Attack
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reference
model

target
model

AT AT

STST X
X



Hybrid Attack
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reference
model

target
model

AT AT

STST X
X



Hybrid Attack
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Summary of Project 2 
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• Poisoning AT is possible based on a new attack strategy

• Poisoning AT vs. ST
• Hybrid attack



Future Directions
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• Possible defenses against our new attack
   - generic: training techniques for noisy labels?
   - specific: detecting/pre-filtering our attack?

• More efficient hybrid attack than



• Overview of adversarial images in computer vision

• Two recent projects

• Other related projects

Outline
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Imperceptible Perturbations
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ε


x catx

ε
CIEDE2000

x catx



Perceptible yet Stealthy Attacks
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× =

x x

color transformation



Adversarial attacks on Image Retrieval

66



- On Success and Simplicity: A Second Look at Transferable Targeted Attacks (Project 1)
   Zhengyu Zhao, Zhuoran Liu, Martha Larson. NeurIPS 2021.

- Is Adversarial Training Really a Silver Bullet for Mitigating Data Poisoning? (Project 2)
   Rui Wen, Zhengyu Zhao, Zhuoran Liu, Michael Backes, Tianhao Wang, Yang Zhang. ICLR 2023.

- Towards Good Practices in Evaluating Transfer Adversarial Attacks
   Zhengyu Zhao*, Hanwei Zhang*, Renjue Li*, Ronan Sicre, Laurent Amsaleg, Michael Backes. arXiv 2022.

- Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance
   Zhengyu Zhao, Zhuoran Liu, Martha Larson. CVPR 2020.

- Adversarial Image Color Transformations in Explicit Color Filter Space
   Zhengyu Zhao, Zhuoran Liu, Martha Larson. BMVC 2020.

- Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval
   Zhuoran Liu, Zhengyu Zhao, Martha Larson. ICMR 2019. 

     zhengyu.zhao@cispa.de        zhengyuzhao.github.io                 
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Thank you!

Q&A


