About Me

Postdoc @ CISPA Helmholtz Center for Information Security, Germany

PhD @ Radboud University, The Netherlands

Research focus:

Analyzing the vulnerability of deep neural networks to various attacks, e.g., (test-time) adversarial examples and (training-time) data poisons.

Failures of Computer Vision in Adversarial Scenarios

03/03/2023

Outline

- Overview of adversarial images in computer vision
- Two recent projects
- Other related projects

Outline

- Overview of adversarial images in computer vision
- Two recent projects
- Other related projects

Computer Vision (CV)

change perspective

Working pipeline of CV

Success of CV

change perspective

credit: https://www.synopsys.com/designware-ip/technical-bulletin/computer-vision-lab-life.html

Success of CV

Failure of CV (against Real-world Perturbations)

Failure of CV (against Real-world Perturbations)

face recognition^[1]

self-driving car^[2]

[1] https://ipvm.com/reports/face-masks

[2] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona

average-case (real-world) Image perturbations?

average-case (real-world) Image perturbations?

worst-case (adversarial) Image perturbations!

Formalize Adversarial Image Perturbations

Stealthy Attacks with Imperceptible Perturbations

Real-world \rightarrow **Adversarial** Image Perturbations

face recognition^[1]

adversarial mask^[2]

[1] https://ipvm.com/reports/face-masks [2] https://towardsdatascience.com/fooling-facial-detection-with-fashion-d668ed919eb

Real-world \rightarrow **Adversarial** Image Perturbations

self-driving car^[1]

adversarial graffiti^[2]

[1] https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona [2] Eykholt et al. *Robust physical-world attacks on deep learning visual classification*. CVPR 2018.

$$\theta' = \underset{\theta}{\arg\min} J(\theta, x_{cat}, y_{cat})$$

change perspective

Objective:
$$x' = \arg \min_{x} J(\theta_o, x, y_t)$$
 s.t. $||x' - x_{cat}||_{\infty} \le \varepsilon$

Optimization: Iterative-Fast Gradient Sign Method (I-FGSM)^[1]

$$x'_{0} = x_{cat}, \quad x'_{i+1} = x'_{i} - \operatorname{sign}(\nabla_{x}J(x'_{i}, y_{t}))$$
$$x'_{i+1} \leftarrow \operatorname{clip}(x'_{i+1} - x_{cat}, -\varepsilon, \varepsilon)$$

[1] Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017

Success of computer vision

Failures against real-world perturbations
 ... adversarial images
 optimize adversarial images

Outline

- Overview of adversarial images in computer vision
- Two recent projects
- Other related projects

Consensus-Challenging Insights

Project 1. Transferable Targeted Attacks

change perspective

Transfer Techniques

- Gradient stabilization e.g., momentum-based (MI-FGSM)^[1]:

$$g_{i+1} = \mu \cdot g_i + \frac{\nabla_x J(x'_i, y_t)}{\|\nabla_x J(x'_i, y_t)\|_1}$$
$$x'_{i+1} = x'_i - \alpha \cdot \operatorname{sign}(g_i)$$

- Data augmentation e.g., resizing & padding (DI-FGSM)^[2] translation (TI-FGSM)^[3]:

$$\boldsymbol{x}_{i+1}' = \boldsymbol{x}_i' - \alpha \cdot \operatorname{sign}(\nabla_{\boldsymbol{x}} J(T(\boldsymbol{x}_i', p), y_t))$$

[1] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.

[2] Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019

[3] Dong et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. CVPR 2019.

Consensus-Challenging Insight

[1] Liu et al. *Delving into transferable adversarial examples and black-box attacks*. ICLR 2017.

[2] Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.

[3] Inkawhich et al. Feature space perturbations yield more transferable adversarial examples. CVPR 2019.

[4] Inkawhich et al. Transferable perturbations of deep feature distributions. ICLR 2020.

[5] Inkawhich et al. Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability. NeurIPS 2020.

[6] Naseer et al. On generating transferable targeted perturbations. ICCV 2021.

Fix I-FGSM: Step 1. Ensemble ($0\% \rightarrow 15\%$)

ResNet50 → DenseNet121 (Iter. =10) I-FGSM: ~0% MI-FGSM: ~0.5% TI-FGSM: ~0.5% DI-FGSM: ~5% MTDI-FGSM: ~15%

single technique in existing work

Fix I-FGSM: Step 2. More Iterations ($15\% \rightarrow 42\%$ **)**

<20 iterations in existing work:

fail to converge
 efficiency is not important

Fix I-FGSM: Step 3. Suitable Loss

Cross-Entropy Loss (L_{CE}) causes **decreasing gradient** problem:

Fix I-FGSM: Step 3. Suitable Loss

Cross-Entropy Loss (L_{CE}) causes **decreasing gradient** problem:

Logit Loss (L_{Logit}):

$$L_{Logit} = -z_t, \ \frac{\partial L_{Logit}}{\partial z_t} = -1.$$

change perspective

Fix I-FGSM: Step 3. Suitable Loss ($42\% \rightarrow 72\%$)

Other Analyses: Real-World Attacks

		Services	Evaluation	Ori	CE	Po+Trip	Logit		
		Object non-targeted localization targeted		31.50 0	31.5053.0051.7509.008.50		62.50 19.25		
		Label detection	non-targeted targeted	9.75 0	34.00 4.50	22.50 2.25	35.00 6.25		
gle Cloud Why Google	Solutions Products Pricing Getting S >	Q E Docs S	Support	onsole	Pricing	Getting Started		٩	Docs Support English
	Landmarks Labels	Text	Properties Safe Se	arch		Objects	Labels	Properties	Safe Search
/ision Al		Sky	96	%				Boat	93%
'ision AI Benefits		Sky Chinese Arch	96 nitecture 88	%				Boat Sky	93% 92%
/ision AI Benefits Demo		Sky Chinese Arch Travel	96 nitecture 88 81	%		-		Boat Sky Vehicle	93% 92% 86%
/ision Al Benefits Demo Key features Vision API and AutoMI		Sky Chinese Arch Travel Temple	96 nitecture 88 81 78	%		the second		Boat Sky Vehicle Watercraft	93% 92% 86% 86%
/ision Al Benefits Demo Key features Vision API and AutoML Vision customers		Sky Chinese Arch Travel Temple Composite M	96 nitecture 88 81 78 Aaterial 75	% % %		-		Boat Sky Vehicle Watercraft Naval Architecture	93% 92% 86% 81%
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers What's new		Sky Chinese Arch Travel Temple Composite M Facade	96 nitecture 88 81 78 Aaterial 75 74	% % %				Boat Sky Vehicle Watercraft Naval Architecture Art	93% 92% 86% 86% 81% 75%
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers What's new Documentation		Sky Chinese Arch Travel Temple Composite M Facade Building	96 hitecture 88 81 78 Aaterial 75 74 73	% % % %				Boat Sky Vehicle Watercraft Naval Architecture Art Water	93% 92% 86% 86% 81% 75% 72%
Vision AI Benefits Demo Key features Vision API and AutoML Vision customers What's new Documentation Use cases		Sky Chinese Arch Travel Temple Composite M Facade Building Shade	96 nitecture 88 81 78 Aaterial 75 74 73 72					Boat Sky Vehicle Watercraft Naval Architecture Art Water	93% 92% 86% 86% 81% 75% 72%

[8] Zhao et al. The Importance of Image Interpretation: Patterns of Semantic Misclassification in Real-World Adversarial Images. MMM 2023.

Other Analyses: Perturbation Semantics

without e

Other Analyses: Targeted Universal Perturbations^[1]

Success rates (%)							
Attack	Inc-v3	Res50	Dense121	VGG16			
CE Logit	2.6 4.7	9.2 22.8	8.7 21.8	20.1 65.9			

with $\epsilon = 16$

[1] Moosavi-Dezfooli et al. Universal Adversarial Perturbations. CVPR 2017.

Other Analyses: I-FGSM (ours) vs. Generative (SOTA)

/S

Ours

- Data: Single Input image
- Model: 1 × surrogate classifier

[1] Naseer et al. On Generating Transferable Targeted Perturbation. ICCV 2021

Other Analyses: I-FGSM (ours) vs. Generative (SOTA)

Targeted Transferability (%)							
Bound	Attack	D121	V16	D121-ens	V16-ens		
$\epsilon = 16$	SOTA	79.6	78.6	92.9	89.6		
	ours	75.9	72.5	99.4	97.7		
$\epsilon = 8$	SOTA	37.5	46.7	63.2	66.2		
	ours	44.5	46.8	92.6	87.0		

Summary of Project 1

- 3 steps to fix I-FGSM
 - ensemble
 - more iterations
 - suitable (logit) loss

- Other Analyses
 - real-world attacks
 - universal perturbations
 - I-FGSM (data/training-free) vs. generative

Summary of Project 1

- 3 steps to revive I-FGSM
 - ensemble
 - more iterations
 - suitable (logit) loss

- Other Analyses
 - real-world attacks
 - universal perturbations
 - I-FGSM (data/training-free) vs. generative

"God is in the details"

Future Work

• Explaining transferability

Benchmarking transferability

E Zhao et al. Towards Good Practices in Evaluating Transfer Adversarial Attacks. arXiv 2022

- https://github.com/ZhengyuZhao/TransferAttackEval
- Systematic categorization of 40+ transfer attacks
- 23 representative attacks against 9 representative defenses on ImageNet
- Consensus-challenging insights

Testing-Stage Attack

Training-Stage Attack

Project 2. Poisoning Against Adversarial Training

Adversarial Training-based Defense

Adversarial Training-based Defense

[1] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurIPS 2021.

Consensus-Challenging Insight

[1] Fowl et al. Adversarial Examples Make Strong Poisons. NeurIPS 2021.

- [2] Huang et al. Unlearnable Examples: Making Personal Data Unexploitable. ICLR 2021.
- [3] Tao et al. Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training. NeurIPS 2021.
- [4] Wang et al. Fooling Adversarial Training with Inducing Noise. arXiv 2021.
- [5] Fu et al. Robust Unlearnable Examples: Protecting Data Against Adversarial Learning. ICLR 2022.
- [6] Tao et al. Can Adversarial Training Be Manipulated By Non-Robust Features? NeurIPS 2022.

Consensus-Challenging Insight

Existing Poisoning

clean training

Test Acc: 84.88%

Radboud University

Test Acc: 84.88%

existing poisoning

 $x' = \arg\min_{x} J(x, y_{t})$

Test Acc: 83.11% 🍑

Radboud University

Test Acc: 84.88%

 $x' = \arg\min J(x, y_t)$

Test Acc: 84.88%

equal to discarding 83% training data!

change perspective

existing poisoning

54

Results

- Different datasets
- Different AT frameworks
- Transferability
- Partial data Poisoning training data
- Ensemble defenses
- Adaptive defenses

. . .

Standard Training (ST) vs. Adversarial Training (AT)

Hybrid Attack

Hybrid Attack

change perspective

Hybrid Attack

METHOD					Optimal
$(\epsilon_{\rm poi} = 8/255) \setminus \epsilon_{\rm adv}$	0/255	4/255	8/255	16/255	TEST ACC.
NONE (CLEAN)	94.59	90.31	84.88	73.78	94.59
ADVPOISON	9.91	88.98	83.11	71.31	88.98
REM	25.59	46.57	84.21	85.76	85.76
ADVIN	77.31	90.08	86.76	72.16	90.08
UNLEARNABLE	25.69	90.47	84.91	79.81	90.47
HYPOCRITICAL	74.06	91.18	84.96	73.33	91.18
HYPOCRITICAL+	75.22	84.82	86.56	82.26	86.56
OURS	83.10	75.39	71.51	63.73	83.10
OURS (HYBRID)	12.93	76.55	74.30	65.75	76.55
					1

Summary of Project 2

• Poisoning AT is possible based on a new attack strategy

- Poisoning AT vs. ST
- Hybrid attack

Future Directions

- Possible defenses against our new attack
 - generic: training techniques for noisy labels?
 - specific: detecting/pre-filtering our attack?
- More efficient hybrid attack than

$$\mathcal{L}_{\text{hybrid}} = \max_{\boldsymbol{\delta}^{\text{poi}}} \|F_{L-1,\text{ST}}^*(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y,\text{ST}}\|_2 + \lambda \|F_{L-1,\text{AT}}^*(\boldsymbol{x} + \boldsymbol{\delta}^{\text{poi}}) - \boldsymbol{\mu}_{y,\text{AT}}\|_2$$

Outline

- Overview of adversarial images in computer vision
- Two recent projects
- Other related projects

Imperceptible Perturbations

Perceptible yet Stealthy Attacks

Adversarial attacks on Image Retrieval

- On Success and Simplicity: A Second Look at Transferable Targeted Attacks (Project 1) Zhengyu Zhao, Zhuoran Liu, Martha Larson. NeurIPS 2021.
- Is Adversarial Training Really a Silver Bullet for Mitigating Data Poisoning? (Project 2) Rui Wen, Zhengyu Zhao, Zhuoran Liu, Michael Backes, Tianhao Wang, Yang Zhang. ICLR 2023.
- Towards Good Practices in Evaluating Transfer Adversarial Attacks Zhengyu Zhao*, Hanwei Zhang*, Renjue Li*, Ronan Sicre, Laurent Amsaleg, Michael Backes. arXiv 2022.
- Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance Zhengyu Zhao, Zhuoran Liu, Martha Larson. CVPR 2020.
- Adversarial Image Color Transformations in Explicit Color Filter Space Zhengyu Zhao, Zhuoran Liu, Martha Larson. BMVC 2020.
- Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval

Zhuoran Liu, Zhengyu Zhao, Martha Larson. ICMR 2019.

Zhengyu.zhao@cispa.de 💣 zhengyuzhao.github.io

Thank you!

